Seunghyun Lee, Namki Hong, Gyu Seop Kim, Jing Li, Xiaoyu Lin, Sarah Seager, Sungjae Shin, Kyoung Jin Kim, Jae Hyun Bae, Seng Chan You, Yumie Rhee, Sin Gon Kim
{"title":"Digital Phenotyping of Rare Endocrine Diseases Across International Data Networks and the Effect of Granularity of Original Vocabulary.","authors":"Seunghyun Lee, Namki Hong, Gyu Seop Kim, Jing Li, Xiaoyu Lin, Sarah Seager, Sungjae Shin, Kyoung Jin Kim, Jae Hyun Bae, Seng Chan You, Yumie Rhee, Sin Gon Kim","doi":"10.3349/ymj.2023.0628","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Rare diseases occur in <50 per 100000 people and require lifelong management. However, essential epidemiological data on such diseases are lacking, and a consecutive monitoring system across time and regions remains to be established. Standardized digital phenotypes are required to leverage an international data network for research on rare endocrine diseases. We developed digital phenotypes for rare endocrine diseases using the observational medical outcome partnership common data model.</p><p><strong>Materials and methods: </strong>Digital phenotypes of three rare endocrine diseases (medullary thyroid cancer, hypoparathyroidism, pheochromocytoma/paraganglioma) were validated across three databases that use different vocabularies: Severance Hospital's electronic health record from South Korea; IQVIA's United Kingdom (UK) database for general practitioners; and IQVIA's United States (US) hospital database for general hospitals. We estimated the performance of different digital phenotyping methods based on International Classification of Diseases (ICD)-10 in the UK and the US or systematized nomenclature of medicine clinical terms (SNOMED CT) in Korea.</p><p><strong>Results: </strong>The positive predictive value of digital phenotyping was higher using SNOMED CT-based phenotyping than ICD-10-based phenotyping for all three diseases in Korea (e.g., pheochromocytoma/paraganglioma: ICD-10, 58%-62%; SNOMED CT, 89%). Estimated incidence rates by digital phenotyping were as follows: medullary thyroid cancer, 0.34-2.07 (Korea), 0.13-0.30 (US); hypoparathyroidism, 0.40-1.20 (Korea), 0.59-1.01 (US), 0.00-1.78 (UK); and pheochromocytoma/paraganglioma, 0.95-1.67 (Korea), 0.35-0.77 (US), 0.00-0.49 (UK).</p><p><strong>Conclusion: </strong>Our findings demonstrate the feasibility of developing digital phenotyping of rare endocrine diseases and highlight the importance of implementing SNOMED CT in routine clinical practice to provide granularity for research.</p>","PeriodicalId":23765,"journal":{"name":"Yonsei Medical Journal","volume":"66 3","pages":"187-194"},"PeriodicalIF":2.6000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11865875/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Yonsei Medical Journal","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3349/ymj.2023.0628","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, GENERAL & INTERNAL","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: Rare diseases occur in <50 per 100000 people and require lifelong management. However, essential epidemiological data on such diseases are lacking, and a consecutive monitoring system across time and regions remains to be established. Standardized digital phenotypes are required to leverage an international data network for research on rare endocrine diseases. We developed digital phenotypes for rare endocrine diseases using the observational medical outcome partnership common data model.
Materials and methods: Digital phenotypes of three rare endocrine diseases (medullary thyroid cancer, hypoparathyroidism, pheochromocytoma/paraganglioma) were validated across three databases that use different vocabularies: Severance Hospital's electronic health record from South Korea; IQVIA's United Kingdom (UK) database for general practitioners; and IQVIA's United States (US) hospital database for general hospitals. We estimated the performance of different digital phenotyping methods based on International Classification of Diseases (ICD)-10 in the UK and the US or systematized nomenclature of medicine clinical terms (SNOMED CT) in Korea.
Results: The positive predictive value of digital phenotyping was higher using SNOMED CT-based phenotyping than ICD-10-based phenotyping for all three diseases in Korea (e.g., pheochromocytoma/paraganglioma: ICD-10, 58%-62%; SNOMED CT, 89%). Estimated incidence rates by digital phenotyping were as follows: medullary thyroid cancer, 0.34-2.07 (Korea), 0.13-0.30 (US); hypoparathyroidism, 0.40-1.20 (Korea), 0.59-1.01 (US), 0.00-1.78 (UK); and pheochromocytoma/paraganglioma, 0.95-1.67 (Korea), 0.35-0.77 (US), 0.00-0.49 (UK).
Conclusion: Our findings demonstrate the feasibility of developing digital phenotyping of rare endocrine diseases and highlight the importance of implementing SNOMED CT in routine clinical practice to provide granularity for research.
期刊介绍:
The goal of the Yonsei Medical Journal (YMJ) is to publish high quality manuscripts dedicated to clinical or basic research. Any authors affiliated with an accredited biomedical institution may submit manuscripts of original articles, review articles, case reports, brief communications, and letters to the Editor.