Optimizing Quality Tolerance Limits Monitoring in Clinical Trials Through Machine Learning Methods.

IF 2 4区 医学 Q4 MEDICAL INFORMATICS
Lei Yan, Ziji Yu, Liwen Wu, Rachael Liu, Jianchang Lin
{"title":"Optimizing Quality Tolerance Limits Monitoring in Clinical Trials Through Machine Learning Methods.","authors":"Lei Yan, Ziji Yu, Liwen Wu, Rachael Liu, Jianchang Lin","doi":"10.1007/s43441-025-00754-6","DOIUrl":null,"url":null,"abstract":"<p><p>The traditional clinical trial monitoring process, which relies heavily on site visits and manual review of accumulative patient data reported through Electronic Data Capture system, is time-consuming and resource-intensive. The recently emerged risk-based monitoring (RBM) and quality tolerance limit (QTL) framework offers a more efficient alternative solution to traditional SDV (source data verification) based quality assurance. These frameworks aim at proactively identifying systematic issues that impact patient safety and data integrity. In this paper, we proposed a machine learning enabled approach to facilitate real-time, automated monitoring of clinical trial QTL risk assessment. Unlike the traditional quality assurance process, where QTLs are evaluated based on single-source data and arbitrary defined fixed threshold, we utilize the QTL-ML framework to integrate information from multiple clinical domains to predict the QTL of variety types at clinical program, study, site and patient level. Moreover, our approach is assumption-free, relying not on historical expectations but on dynamically accumulating trial data to predict quality tolerance limit risks in an automated manner. Embedded within ICH-E6 recommended RBM principles, this innovative machine learning solution for QTL monitoring has the potential to transform sponsors' ability to protect patient safety, reduce trial duration, and lower trial costs.</p>","PeriodicalId":23084,"journal":{"name":"Therapeutic innovation & regulatory science","volume":" ","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Therapeutic innovation & regulatory science","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s43441-025-00754-6","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MEDICAL INFORMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

The traditional clinical trial monitoring process, which relies heavily on site visits and manual review of accumulative patient data reported through Electronic Data Capture system, is time-consuming and resource-intensive. The recently emerged risk-based monitoring (RBM) and quality tolerance limit (QTL) framework offers a more efficient alternative solution to traditional SDV (source data verification) based quality assurance. These frameworks aim at proactively identifying systematic issues that impact patient safety and data integrity. In this paper, we proposed a machine learning enabled approach to facilitate real-time, automated monitoring of clinical trial QTL risk assessment. Unlike the traditional quality assurance process, where QTLs are evaluated based on single-source data and arbitrary defined fixed threshold, we utilize the QTL-ML framework to integrate information from multiple clinical domains to predict the QTL of variety types at clinical program, study, site and patient level. Moreover, our approach is assumption-free, relying not on historical expectations but on dynamically accumulating trial data to predict quality tolerance limit risks in an automated manner. Embedded within ICH-E6 recommended RBM principles, this innovative machine learning solution for QTL monitoring has the potential to transform sponsors' ability to protect patient safety, reduce trial duration, and lower trial costs.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Therapeutic innovation & regulatory science
Therapeutic innovation & regulatory science MEDICAL INFORMATICS-PHARMACOLOGY & PHARMACY
CiteScore
3.40
自引率
13.30%
发文量
127
期刊介绍: Therapeutic Innovation & Regulatory Science (TIRS) is the official scientific journal of DIA that strives to advance medical product discovery, development, regulation, and use through the publication of peer-reviewed original and review articles, commentaries, and letters to the editor across the spectrum of converting biomedical science into practical solutions to advance human health. The focus areas of the journal are as follows: Biostatistics Clinical Trials Product Development and Innovation Global Perspectives Policy Regulatory Science Product Safety Special Populations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信