J C Ordoñez, C Tovar, B E Walker, J Wheeler, S Ayala-Ruano, K Aguirre-Carvajal, S M McMahon, F Cuesta
{"title":"Phenological patterns of tropical mountain forest trees across the neotropics: evidence from herbarium specimens.","authors":"J C Ordoñez, C Tovar, B E Walker, J Wheeler, S Ayala-Ruano, K Aguirre-Carvajal, S M McMahon, F Cuesta","doi":"10.1098/rspb.2024.2748","DOIUrl":null,"url":null,"abstract":"<p><p>The flowering phenology of many tropical mountain forest tree species remains poorly understood, including flowering synchrony and its drivers across neotropical ecosystems. We obtained herbarium records for 427 tree species from a long-term monitoring transect on the northwestern Ecuadorian Andes, sourced from the Global Biodiversity Information Facility and the Herbario Nacional del Ecuador. Using machine learning algorithms, we identified flowering phenophases from digitized specimen labels and applied circular statistics to build phenological calendars across six climatic regions within the neotropics. We found 47 939 herbarium records, of which 14 938 were classified as flowering by Random Forest Models. We constructed phenological calendars for six regions and 86 species with at least 20 flowering records. Phenological patterns varied considerably across regions, among species within regions, and within species across regions. There was limited interannual synchronicity in flowering patterns within regions primarily driven by bimodal species whose flowering peaks coincided with irradiance peaks. The predominantly high variability of phenological patterns among species and within species likely confers adaptative advantages by reducing interspecific competition during reproductive periods and promoting species coexistence in highly diverse regions with little or no seasonality.</p>","PeriodicalId":20589,"journal":{"name":"Proceedings of the Royal Society B: Biological Sciences","volume":"292 2041","pages":"20242748"},"PeriodicalIF":3.8000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11858787/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Royal Society B: Biological Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1098/rspb.2024.2748","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/26 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The flowering phenology of many tropical mountain forest tree species remains poorly understood, including flowering synchrony and its drivers across neotropical ecosystems. We obtained herbarium records for 427 tree species from a long-term monitoring transect on the northwestern Ecuadorian Andes, sourced from the Global Biodiversity Information Facility and the Herbario Nacional del Ecuador. Using machine learning algorithms, we identified flowering phenophases from digitized specimen labels and applied circular statistics to build phenological calendars across six climatic regions within the neotropics. We found 47 939 herbarium records, of which 14 938 were classified as flowering by Random Forest Models. We constructed phenological calendars for six regions and 86 species with at least 20 flowering records. Phenological patterns varied considerably across regions, among species within regions, and within species across regions. There was limited interannual synchronicity in flowering patterns within regions primarily driven by bimodal species whose flowering peaks coincided with irradiance peaks. The predominantly high variability of phenological patterns among species and within species likely confers adaptative advantages by reducing interspecific competition during reproductive periods and promoting species coexistence in highly diverse regions with little or no seasonality.
期刊介绍:
Proceedings B is the Royal Society’s flagship biological research journal, accepting original articles and reviews of outstanding scientific importance and broad general interest. The main criteria for acceptance are that a study is novel, and has general significance to biologists. Articles published cover a wide range of areas within the biological sciences, many have relevance to organisms and the environments in which they live. The scope includes, but is not limited to, ecology, evolution, behavior, health and disease epidemiology, neuroscience and cognition, behavioral genetics, development, biomechanics, paleontology, comparative biology, molecular ecology and evolution, and global change biology.