Investigating Potential Anti-Bacterial Natural Products Based on Ayurvedic Formulae Using Supervised Network Analysis and Machine Learning Approaches.

IF 4.3 3区 医学 Q2 CHEMISTRY, MEDICINAL
Pharmaceuticals Pub Date : 2025-01-30 DOI:10.3390/ph18020192
Pei Gao, Ahmad Kamal Nasution, Naoaki Ono, Shigehiko Kanaya, Md Altaf-Ul-Amin
{"title":"Investigating Potential Anti-Bacterial Natural Products Based on Ayurvedic Formulae Using Supervised Network Analysis and Machine Learning Approaches.","authors":"Pei Gao, Ahmad Kamal Nasution, Naoaki Ono, Shigehiko Kanaya, Md Altaf-Ul-Amin","doi":"10.3390/ph18020192","DOIUrl":null,"url":null,"abstract":"<p><p><b>Objectives</b>: This study implements a multi-dimensional methodology to systematically identify potential natural antibiotics derived from the medicinal plants utilized in Ayurvedic practices. <b>Methods</b>: Two primary analytical techniques are employed to explore the antibiotic potential of the medicinal plants. The initial approach utilizes a supervised network analysis, which involves the application of distance measurement algorithms to scrutinize the interconnectivity and relational patterns within the network derived from Ayurvedic formulae. <b>Results</b>: 39 candidate plants with potential natural antibiotic properties were identified. The second approach leverages advanced machine learning techniques, particularly focusing on feature extraction and pattern recognition. This approach yielded a list of 32 plants exhibiting characteristics indicative of natural antibiotics. A key finding of this research is the identification of 17 plants that were consistently recognized by both analytical methods. These plants are well-documented in existing literature for their antibacterial properties, either directly or through their bioactive compounds, which suggests a strong validation of the study's methodology. By synergizing network analysis with machine learning, this study provides a rigorous and multi-faceted examination of Ayurvedic medicinal plants, significantly contributing to the identification of natural antibiotic candidates. <b>Conclusions</b>: This research not only reinforces the potential of traditional medicine as a source for new therapeutics but also demonstrates the effectiveness of combining classical and contemporary analytical techniques to explore complex biological datasets.</p>","PeriodicalId":20198,"journal":{"name":"Pharmaceuticals","volume":"18 2","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11859686/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmaceuticals","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/ph18020192","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

Objectives: This study implements a multi-dimensional methodology to systematically identify potential natural antibiotics derived from the medicinal plants utilized in Ayurvedic practices. Methods: Two primary analytical techniques are employed to explore the antibiotic potential of the medicinal plants. The initial approach utilizes a supervised network analysis, which involves the application of distance measurement algorithms to scrutinize the interconnectivity and relational patterns within the network derived from Ayurvedic formulae. Results: 39 candidate plants with potential natural antibiotic properties were identified. The second approach leverages advanced machine learning techniques, particularly focusing on feature extraction and pattern recognition. This approach yielded a list of 32 plants exhibiting characteristics indicative of natural antibiotics. A key finding of this research is the identification of 17 plants that were consistently recognized by both analytical methods. These plants are well-documented in existing literature for their antibacterial properties, either directly or through their bioactive compounds, which suggests a strong validation of the study's methodology. By synergizing network analysis with machine learning, this study provides a rigorous and multi-faceted examination of Ayurvedic medicinal plants, significantly contributing to the identification of natural antibiotic candidates. Conclusions: This research not only reinforces the potential of traditional medicine as a source for new therapeutics but also demonstrates the effectiveness of combining classical and contemporary analytical techniques to explore complex biological datasets.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Pharmaceuticals
Pharmaceuticals Pharmacology, Toxicology and Pharmaceutics-Pharmaceutical Science
CiteScore
6.10
自引率
4.30%
发文量
1332
审稿时长
6 weeks
期刊介绍: Pharmaceuticals (ISSN 1424-8247) is an international scientific journal of medicinal chemistry and related drug sciences.Our aim is to publish updated reviews as well as research articles with comprehensive theoretical and experimental details. Short communications are also accepted; therefore, there is no restriction on the maximum length of the papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信