The Anti-Inflammatory Potential of Tricyclic Antidepressants (TCAs): A Novel Therapeutic Approach to Atherosclerosis Pathophysiology.

IF 4.3 3区 医学 Q2 CHEMISTRY, MEDICINAL
Pharmaceuticals Pub Date : 2025-01-31 DOI:10.3390/ph18020197
Majid Eslami, Marzieh Monemi, Mohammad Ali Nazari, Mohammad Hossein Azami, Parand Shariat Rad, Valentyn Oksenych, Ramtin Naderian
{"title":"The Anti-Inflammatory Potential of Tricyclic Antidepressants (TCAs): A Novel Therapeutic Approach to Atherosclerosis Pathophysiology.","authors":"Majid Eslami, Marzieh Monemi, Mohammad Ali Nazari, Mohammad Hossein Azami, Parand Shariat Rad, Valentyn Oksenych, Ramtin Naderian","doi":"10.3390/ph18020197","DOIUrl":null,"url":null,"abstract":"<p><p>Atherosclerosis, a chronic inflammatory disease, is driven by complex molecular mechanisms involving inflammatory cytokines and immune pathways. According to recent research, tricyclic antidepressants (TCAs), which are typically prescribed to treat depressive disorders, have strong anti-inflammatory effects. TCAs, including imipramine and amitriptyline, alter inflammatory signaling cascades, which include lowering the levels pro-inflammatory cytokines like TNF-α, IL-1β, and IL-6 and inhibiting NF-κB activation. By inhibiting the NLRP3 inflammasome and suppressing pathways including JAK/STAT, MAPK, and PI3K, these effects are produced, improving endothelial function and reducing oxidative stress. The intricacy of TCAs' anti-inflammatory actions has demonstrated by the existence of contradictory findings about how they alter IL-6 levels. The dependence of the heterogeneity of the reaction on the use of particular TCAs and experimental settings is shown by the fact that some studies show reduced IL-6 production, while others indicate increases or no changes. This review explores the multifaceted mechanisms through which TCAs modulate inflammatory pathways. TCAs inhibit NF-κB activation, reduce oxidative stress, and suppress the production of key inflammatory mediators, including IL-6 and TNF-α. They also regulate Toll-like receptor (TLR) signaling and NOD-, LRR-, and NLR family pyrin domain-containing protein 3 (NLRP3) inflammasome activation, reducing the release of IL-1β and IL-18, critical drivers of endothelial dysfunction and plaque instability. Given their capacity to target critical inflammatory molecules and pathways, TCAs provide great potential in the therapy of atherosclerosis, particularly for individuals with associated depression and cardiovascular risk factors. Nevertheless, further research is essential to clarify the precise molecular mechanisms, resolve inconsistencies in current findings, and establish the clinical applicability of TCAs as anti-inflammatory agents in atherosclerosis management.</p>","PeriodicalId":20198,"journal":{"name":"Pharmaceuticals","volume":"18 2","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11858810/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmaceuticals","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/ph18020197","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

Atherosclerosis, a chronic inflammatory disease, is driven by complex molecular mechanisms involving inflammatory cytokines and immune pathways. According to recent research, tricyclic antidepressants (TCAs), which are typically prescribed to treat depressive disorders, have strong anti-inflammatory effects. TCAs, including imipramine and amitriptyline, alter inflammatory signaling cascades, which include lowering the levels pro-inflammatory cytokines like TNF-α, IL-1β, and IL-6 and inhibiting NF-κB activation. By inhibiting the NLRP3 inflammasome and suppressing pathways including JAK/STAT, MAPK, and PI3K, these effects are produced, improving endothelial function and reducing oxidative stress. The intricacy of TCAs' anti-inflammatory actions has demonstrated by the existence of contradictory findings about how they alter IL-6 levels. The dependence of the heterogeneity of the reaction on the use of particular TCAs and experimental settings is shown by the fact that some studies show reduced IL-6 production, while others indicate increases or no changes. This review explores the multifaceted mechanisms through which TCAs modulate inflammatory pathways. TCAs inhibit NF-κB activation, reduce oxidative stress, and suppress the production of key inflammatory mediators, including IL-6 and TNF-α. They also regulate Toll-like receptor (TLR) signaling and NOD-, LRR-, and NLR family pyrin domain-containing protein 3 (NLRP3) inflammasome activation, reducing the release of IL-1β and IL-18, critical drivers of endothelial dysfunction and plaque instability. Given their capacity to target critical inflammatory molecules and pathways, TCAs provide great potential in the therapy of atherosclerosis, particularly for individuals with associated depression and cardiovascular risk factors. Nevertheless, further research is essential to clarify the precise molecular mechanisms, resolve inconsistencies in current findings, and establish the clinical applicability of TCAs as anti-inflammatory agents in atherosclerosis management.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Pharmaceuticals
Pharmaceuticals Pharmacology, Toxicology and Pharmaceutics-Pharmaceutical Science
CiteScore
6.10
自引率
4.30%
发文量
1332
审稿时长
6 weeks
期刊介绍: Pharmaceuticals (ISSN 1424-8247) is an international scientific journal of medicinal chemistry and related drug sciences.Our aim is to publish updated reviews as well as research articles with comprehensive theoretical and experimental details. Short communications are also accepted; therefore, there is no restriction on the maximum length of the papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信