A Federated Data Analysis Approach for the Evaluation of Surrogate Endpoints.

IF 1.3 4区 医学 Q4 PHARMACOLOGY & PHARMACY
Dries De Witte, Ariel Alonso Abad, Diane Stephenson, Yashmin Karten, Antoine Leuzy, Gregory Klein, Geert Molenberghs
{"title":"A Federated Data Analysis Approach for the Evaluation of Surrogate Endpoints.","authors":"Dries De Witte, Ariel Alonso Abad, Diane Stephenson, Yashmin Karten, Antoine Leuzy, Gregory Klein, Geert Molenberghs","doi":"10.1002/pst.70003","DOIUrl":null,"url":null,"abstract":"<p><p>In clinical trials, surrogate endpoints, that are more cost-effective, occur earlier, or are more frequently measured, are sometimes used to replace costly, late, or rare true endpoints. Regulatory authorities typically require thorough evaluation and validation to accept these surrogate endpoints as reliable substitutes. To this end, the meta-analytic framework is considered a very viable approach to validate surrogates at both trial and individual levels. However, this framework requires data from multiple trials or centers, posing challenges when data sharing is not feasible. In this article, we propose a federated data analysis approach that allows organizations to maintain control over their datasets while still enabling surrogate validation through meta-analytic techniques. In this approach, there is no longer a need for raw data sharing. Instead, independent analyses are conducted at each organization. Thereafter, the results of these independent analyses are aggregated at a central analysis hub and the metrics for surrogate evaluation are extracted. We apply this approach to simulated and real clinical data, demonstrating how this federated approach can overcome data-sharing constraints and validate surrogate endpoints in decentralized settings.</p>","PeriodicalId":19934,"journal":{"name":"Pharmaceutical Statistics","volume":"24 2","pages":"e70003"},"PeriodicalIF":1.3000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmaceutical Statistics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/pst.70003","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

In clinical trials, surrogate endpoints, that are more cost-effective, occur earlier, or are more frequently measured, are sometimes used to replace costly, late, or rare true endpoints. Regulatory authorities typically require thorough evaluation and validation to accept these surrogate endpoints as reliable substitutes. To this end, the meta-analytic framework is considered a very viable approach to validate surrogates at both trial and individual levels. However, this framework requires data from multiple trials or centers, posing challenges when data sharing is not feasible. In this article, we propose a federated data analysis approach that allows organizations to maintain control over their datasets while still enabling surrogate validation through meta-analytic techniques. In this approach, there is no longer a need for raw data sharing. Instead, independent analyses are conducted at each organization. Thereafter, the results of these independent analyses are aggregated at a central analysis hub and the metrics for surrogate evaluation are extracted. We apply this approach to simulated and real clinical data, demonstrating how this federated approach can overcome data-sharing constraints and validate surrogate endpoints in decentralized settings.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Pharmaceutical Statistics
Pharmaceutical Statistics 医学-统计学与概率论
CiteScore
2.70
自引率
6.70%
发文量
90
审稿时长
6-12 weeks
期刊介绍: Pharmaceutical Statistics is an industry-led initiative, tackling real problems in statistical applications. The Journal publishes papers that share experiences in the practical application of statistics within the pharmaceutical industry. It covers all aspects of pharmaceutical statistical applications from discovery, through pre-clinical development, clinical development, post-marketing surveillance, consumer health, production, epidemiology, and health economics. The Journal is both international and multidisciplinary. It includes high quality practical papers, case studies and review papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信