Kinsenoside alleviates experimental acute pancreatitis by suppressing M1 macrophage polarization via the TLR4/STAT1 signaling pathway

IF 4.8 2区 医学 Q1 CHEMISTRY, MEDICINAL
Ruiyan Wang , Jing Jiang , Pengli Song , Qi Peng , Xuerui Jin , Bin Li , Jie Shen , Xiao Han , Jianbo Ni , Guoyong Hu
{"title":"Kinsenoside alleviates experimental acute pancreatitis by suppressing M1 macrophage polarization via the TLR4/STAT1 signaling pathway","authors":"Ruiyan Wang ,&nbsp;Jing Jiang ,&nbsp;Pengli Song ,&nbsp;Qi Peng ,&nbsp;Xuerui Jin ,&nbsp;Bin Li ,&nbsp;Jie Shen ,&nbsp;Xiao Han ,&nbsp;Jianbo Ni ,&nbsp;Guoyong Hu","doi":"10.1016/j.jep.2025.119551","DOIUrl":null,"url":null,"abstract":"<div><h3>Ethnopharmacological relevance</h3><div>Acute pancreatitis (AP) is an inflammatory disease that can progress to systemic immune responses and multi-organ damage in its severe forms. <em>Anoectochilus roxburghii</em> (Wall.) Lindl. (AR), a traditional Chinese medicinal plant, has been reported to exhibit anti-inflammatory, hypoglycemic, hepatoprotective, and analgesic properties. Kinsenoside (KD), the primary bioactive glycoside in AR, is responsible for many of its therapeutic effects. Given its anti-inflammatory and immunomodulatory properties, KD may have the potential to mitigate pancreatic inflammation in AP. However, its protective role in AP has not yet been investigated.</div></div><div><h3>Aim of the study</h3><div>This study aimed to investigate the protective effects of the natural active compound KD against acute pancreatitis (AP) and its associated molecular mechanisms.</div></div><div><h3>Materials and methods</h3><div>Two AP mouse models were established: one by intraperitoneal injection of caerulein combined with lipopolysaccharide (LPS) and the other by retrograde injection of sodium taurocholate (NaT) into the biliopancreatic duct. KD (2.5, 5, 10 mg/kg) was administered as a pre-treatment 1 h before the induction of AP. The severity of AP was evaluated through histopathological analysis, while macrophage infiltration and phenotypic changes in pancreatic tissues were examined using immunofluorescence staining and flow cytometry.</div><div>Bone marrow-derived macrophages (BMDMs) were polarized into the M1 phenotype through two distinct methods: stimulation with LPS and interferon-γ (IFNγ) and indirect co-culture with pancreatic acinar cells. Changes in macrophage phenotype after KD supplementation (100, 200, and 400 μM) were analyzed using quantitative Reverse Transcription PCR (qRT-PCR) and flow cytometry. Network pharmacology and transcriptomic sequencing were utilized to identify potential targets and pathways affected by KD, with validation of key signaling pathways performed through qPCR and Western blot analysis.</div></div><div><h3>Results</h3><div>In two models of AP mice, KD at a high dose (10 mg/kg) significantly alleviated pancreatic damage. It reduced pancreatic edema, necrosis, and inflammatory cell infiltration, with a notable decrease in macrophage infiltration. Furthermore, KD (10 mg/kg) administration significantly reduced serum lipase by 53.62% in the Caerulein + LPS model and 41.14% in the NaT model, as well as amylase by 28.13% and 27.99%, respectively. Additionally, KD (10 mg/kg) administration mitigated systemic inflammation and lung injury during AP. Both <em>in vivo</em> and <em>in vitro</em> experiments demonstrated that KD (400 μM) significantly reduced the proportion of M1 macrophages. Furthermore, KD (400 μM) downregulated the mRNA expression of M1-associated genes, including <em>Nos2</em>, <em>Tnf</em>, <em>Il1b</em>, and <em>Il6</em>, in macrophages stimulated by both LPS + IFNγ and pancreatic acinar cell-conditioned media. Network pharmacology and transcriptomic analyses identified toll-like receptor 4 (TLR4) as a potential target of KD in the context of AP. KD (400 μM) was shown to inhibit the activation of the TLR4/STAT1 signaling pathway in macrophages exposed to inflammatory stimuli.</div></div><div><h3>Conclusions</h3><div>KD administration mitigated experimental AP induced by diverse etiologies through the inhibition of M1 macrophage polarization via the TLR4/STAT1 signaling pathway. These findings highlight KD as a promising therapeutic candidate with potential clinical applications in the management of AP.</div></div>","PeriodicalId":15761,"journal":{"name":"Journal of ethnopharmacology","volume":"345 ","pages":"Article 119551"},"PeriodicalIF":4.8000,"publicationDate":"2025-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of ethnopharmacology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378874125002351","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

Ethnopharmacological relevance

Acute pancreatitis (AP) is an inflammatory disease that can progress to systemic immune responses and multi-organ damage in its severe forms. Anoectochilus roxburghii (Wall.) Lindl. (AR), a traditional Chinese medicinal plant, has been reported to exhibit anti-inflammatory, hypoglycemic, hepatoprotective, and analgesic properties. Kinsenoside (KD), the primary bioactive glycoside in AR, is responsible for many of its therapeutic effects. Given its anti-inflammatory and immunomodulatory properties, KD may have the potential to mitigate pancreatic inflammation in AP. However, its protective role in AP has not yet been investigated.

Aim of the study

This study aimed to investigate the protective effects of the natural active compound KD against acute pancreatitis (AP) and its associated molecular mechanisms.

Materials and methods

Two AP mouse models were established: one by intraperitoneal injection of caerulein combined with lipopolysaccharide (LPS) and the other by retrograde injection of sodium taurocholate (NaT) into the biliopancreatic duct. KD (2.5, 5, 10 mg/kg) was administered as a pre-treatment 1 h before the induction of AP. The severity of AP was evaluated through histopathological analysis, while macrophage infiltration and phenotypic changes in pancreatic tissues were examined using immunofluorescence staining and flow cytometry.
Bone marrow-derived macrophages (BMDMs) were polarized into the M1 phenotype through two distinct methods: stimulation with LPS and interferon-γ (IFNγ) and indirect co-culture with pancreatic acinar cells. Changes in macrophage phenotype after KD supplementation (100, 200, and 400 μM) were analyzed using quantitative Reverse Transcription PCR (qRT-PCR) and flow cytometry. Network pharmacology and transcriptomic sequencing were utilized to identify potential targets and pathways affected by KD, with validation of key signaling pathways performed through qPCR and Western blot analysis.

Results

In two models of AP mice, KD at a high dose (10 mg/kg) significantly alleviated pancreatic damage. It reduced pancreatic edema, necrosis, and inflammatory cell infiltration, with a notable decrease in macrophage infiltration. Furthermore, KD (10 mg/kg) administration significantly reduced serum lipase by 53.62% in the Caerulein + LPS model and 41.14% in the NaT model, as well as amylase by 28.13% and 27.99%, respectively. Additionally, KD (10 mg/kg) administration mitigated systemic inflammation and lung injury during AP. Both in vivo and in vitro experiments demonstrated that KD (400 μM) significantly reduced the proportion of M1 macrophages. Furthermore, KD (400 μM) downregulated the mRNA expression of M1-associated genes, including Nos2, Tnf, Il1b, and Il6, in macrophages stimulated by both LPS + IFNγ and pancreatic acinar cell-conditioned media. Network pharmacology and transcriptomic analyses identified toll-like receptor 4 (TLR4) as a potential target of KD in the context of AP. KD (400 μM) was shown to inhibit the activation of the TLR4/STAT1 signaling pathway in macrophages exposed to inflammatory stimuli.

Conclusions

KD administration mitigated experimental AP induced by diverse etiologies through the inhibition of M1 macrophage polarization via the TLR4/STAT1 signaling pathway. These findings highlight KD as a promising therapeutic candidate with potential clinical applications in the management of AP.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of ethnopharmacology
Journal of ethnopharmacology 医学-全科医学与补充医学
CiteScore
10.30
自引率
5.60%
发文量
967
审稿时长
77 days
期刊介绍: The Journal of Ethnopharmacology is dedicated to the exchange of information and understandings about people''s use of plants, fungi, animals, microorganisms and minerals and their biological and pharmacological effects based on the principles established through international conventions. Early people confronted with illness and disease, discovered a wealth of useful therapeutic agents in the plant and animal kingdoms. The empirical knowledge of these medicinal substances and their toxic potential was passed on by oral tradition and sometimes recorded in herbals and other texts on materia medica. Many valuable drugs of today (e.g., atropine, ephedrine, tubocurarine, digoxin, reserpine) came into use through the study of indigenous remedies. Chemists continue to use plant-derived drugs (e.g., morphine, taxol, physostigmine, quinidine, emetine) as prototypes in their attempts to develop more effective and less toxic medicinals.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信