TC10 on endosomes regulates the local balance between microtubule stability and dynamics through the PAK2-JNK pathway and promotes axon outgrowth.

IF 3.3 3区 生物学 Q3 CELL BIOLOGY
Journal of cell science Pub Date : 2025-02-15 Epub Date: 2025-02-26 DOI:10.1242/jcs.263636
Shingo Koinuma, Misa Miyaji, Suzuka Akiyama, Yasuyuki Ito, Hiroshi Takemura, Naoyuki Wada, Michihiro Igarashi, Takeshi Nakamura
{"title":"TC10 on endosomes regulates the local balance between microtubule stability and dynamics through the PAK2-JNK pathway and promotes axon outgrowth.","authors":"Shingo Koinuma, Misa Miyaji, Suzuka Akiyama, Yasuyuki Ito, Hiroshi Takemura, Naoyuki Wada, Michihiro Igarashi, Takeshi Nakamura","doi":"10.1242/jcs.263636","DOIUrl":null,"url":null,"abstract":"<p><p>The neuronal cytoskeleton comprises microtubules, actin filaments and neurofilaments, and plays a crucial role in axon outgrowth and transport. Microtubules and actin filaments have attracted considerable attention in axon regeneration studies. We have previously shown that TC10 (also known as RhoQ), a Rho family GTPase that promotes axon outgrowth through membrane addition, is required for efficient axon regeneration. This study demonstrates that TC10 on recycling endosomes, but not on the plasma membrane, balances microtubule stability and dynamics in the axons, thereby counteracting axon retraction. TC10 ablation reduced the phosphorylation of SCG10 (also known as STMN2) and MAP1B, which are neuronal microtubule-binding proteins and JNK substrates. Consistent with this, JNK phosphorylation was decreased in TC10-knockout neurons compared to in wild-type neurons. Furthermore, TC10 deletion significantly reduced PAK2 autophosphorylation. PAK2 was found on Rab11-positive endosomes in cell bodies and axons, and its localization to endosomes was reduced by TC10 loss. PAK inhibition reduced tubulin acetylation and JNK phosphorylation in axons. Furthermore, MKK4 and MKK7 (also known as MAP2K4 and MAP2K7, respectively) were found to mediate signaling from TC10-activated PAK to JNK on JIP1-positive endosomes. Overall, TC10 transmits a microtubule-regulatory signal from PAK2 to SCG10 and MAP1B via JNK on axonal endosomes.</p>","PeriodicalId":15227,"journal":{"name":"Journal of cell science","volume":"138 4","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of cell science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1242/jcs.263636","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/26 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The neuronal cytoskeleton comprises microtubules, actin filaments and neurofilaments, and plays a crucial role in axon outgrowth and transport. Microtubules and actin filaments have attracted considerable attention in axon regeneration studies. We have previously shown that TC10 (also known as RhoQ), a Rho family GTPase that promotes axon outgrowth through membrane addition, is required for efficient axon regeneration. This study demonstrates that TC10 on recycling endosomes, but not on the plasma membrane, balances microtubule stability and dynamics in the axons, thereby counteracting axon retraction. TC10 ablation reduced the phosphorylation of SCG10 (also known as STMN2) and MAP1B, which are neuronal microtubule-binding proteins and JNK substrates. Consistent with this, JNK phosphorylation was decreased in TC10-knockout neurons compared to in wild-type neurons. Furthermore, TC10 deletion significantly reduced PAK2 autophosphorylation. PAK2 was found on Rab11-positive endosomes in cell bodies and axons, and its localization to endosomes was reduced by TC10 loss. PAK inhibition reduced tubulin acetylation and JNK phosphorylation in axons. Furthermore, MKK4 and MKK7 (also known as MAP2K4 and MAP2K7, respectively) were found to mediate signaling from TC10-activated PAK to JNK on JIP1-positive endosomes. Overall, TC10 transmits a microtubule-regulatory signal from PAK2 to SCG10 and MAP1B via JNK on axonal endosomes.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of cell science
Journal of cell science 生物-细胞生物学
CiteScore
7.30
自引率
2.50%
发文量
393
审稿时长
1.4 months
期刊介绍: Journal of Cell Science publishes cutting-edge science, encompassing all aspects of cell biology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信