The Role of Artificial Intelligence Combined With Digital Cholangioscopy for Indeterminant and Malignant Biliary Strictures: A Systematic Review and Meta-analysis.

IF 2.8 4区 医学 Q2 GASTROENTEROLOGY & HEPATOLOGY
Thomas R McCarty, Raj Shah, Ronan P Allencherril, Nabeel Moon, Basile Njei
{"title":"The Role of Artificial Intelligence Combined With Digital Cholangioscopy for Indeterminant and Malignant Biliary Strictures: A Systematic Review and Meta-analysis.","authors":"Thomas R McCarty, Raj Shah, Ronan P Allencherril, Nabeel Moon, Basile Njei","doi":"10.1097/MCG.0000000000002148","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Current endoscopic retrograde cholangiopancreatography (ERCP) and cholangioscopic-based diagnostic sampling for indeterminant biliary strictures remain suboptimal. Artificial intelligence (AI)-based algorithms by means of computer vision in machine learning have been applied to cholangioscopy in an effort to improve diagnostic yield. The aim of this study was to perform a systematic review and meta-analysis to evaluate the diagnostic performance of AI-based diagnostic performance of AI-associated cholangioscopic diagnosis of indeterminant or malignant biliary strictures.</p><p><strong>Methods: </strong>Individualized searches were developed in accordance with PRISMA and MOOSE guidelines, and meta-analysis according to Cochrane Diagnostic Test Accuracy working group methodology. A bivariate model was used to compute pooled sensitivity and specificity, likelihood ratio, diagnostic odds ratio, and summary receiver operating characteristics curve (SROC).</p><p><strong>Results: </strong>Five studies (n=675 lesions; a total of 2,685,674 cholangioscopic images) were included. All but one study analyzed a deep learning AI-based system using a convoluted neural network (CNN) with an average image processing speed of 30 to 60 frames per second. The pooled sensitivity and specificity were 95% (95% CI: 85-98) and 88% (95% CI: 76-94), with a diagnostic accuracy (SROC) of 97% (95% CI: 95-98). Sensitivity analysis of CNN studies (4 studies, 538 patients) demonstrated a pooled sensitivity, specificity, and accuracy (SROC) of 95% (95% CI: 82-99), 88% (95% CI: 72-95), and 97% (95% CI: 95-98), respectively.</p><p><strong>Conclusions: </strong>Artificial intelligence-based machine learning of cholangioscopy images appears to be a promising modality for the diagnosis of indeterminant and malignant biliary strictures.</p>","PeriodicalId":15457,"journal":{"name":"Journal of clinical gastroenterology","volume":" ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of clinical gastroenterology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/MCG.0000000000002148","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GASTROENTEROLOGY & HEPATOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Current endoscopic retrograde cholangiopancreatography (ERCP) and cholangioscopic-based diagnostic sampling for indeterminant biliary strictures remain suboptimal. Artificial intelligence (AI)-based algorithms by means of computer vision in machine learning have been applied to cholangioscopy in an effort to improve diagnostic yield. The aim of this study was to perform a systematic review and meta-analysis to evaluate the diagnostic performance of AI-based diagnostic performance of AI-associated cholangioscopic diagnosis of indeterminant or malignant biliary strictures.

Methods: Individualized searches were developed in accordance with PRISMA and MOOSE guidelines, and meta-analysis according to Cochrane Diagnostic Test Accuracy working group methodology. A bivariate model was used to compute pooled sensitivity and specificity, likelihood ratio, diagnostic odds ratio, and summary receiver operating characteristics curve (SROC).

Results: Five studies (n=675 lesions; a total of 2,685,674 cholangioscopic images) were included. All but one study analyzed a deep learning AI-based system using a convoluted neural network (CNN) with an average image processing speed of 30 to 60 frames per second. The pooled sensitivity and specificity were 95% (95% CI: 85-98) and 88% (95% CI: 76-94), with a diagnostic accuracy (SROC) of 97% (95% CI: 95-98). Sensitivity analysis of CNN studies (4 studies, 538 patients) demonstrated a pooled sensitivity, specificity, and accuracy (SROC) of 95% (95% CI: 82-99), 88% (95% CI: 72-95), and 97% (95% CI: 95-98), respectively.

Conclusions: Artificial intelligence-based machine learning of cholangioscopy images appears to be a promising modality for the diagnosis of indeterminant and malignant biliary strictures.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of clinical gastroenterology
Journal of clinical gastroenterology 医学-胃肠肝病学
CiteScore
5.60
自引率
3.40%
发文量
339
审稿时长
3-8 weeks
期刊介绍: Journal of Clinical Gastroenterology gathers the world''s latest, most relevant clinical studies and reviews, case reports, and technical expertise in a single source. Regular features include cutting-edge, peer-reviewed articles and clinical reviews that put the latest research and development into the context of your practice. Also included are biographies, focused organ reviews, practice management, and therapeutic recommendations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信