Matthias Niemann, Benedict M Matern, Gaurav Gupta, Bekir Tanriover, Fabian Halleck, Klemens Budde, Eric Spierings
{"title":"Advancing risk stratification in kidney transplantation: integrating HLA-derived T-cell epitope and B-cell epitope matching algorithms for enhanced predictive accuracy of HLA compatibility.","authors":"Matthias Niemann, Benedict M Matern, Gaurav Gupta, Bekir Tanriover, Fabian Halleck, Klemens Budde, Eric Spierings","doi":"10.3389/fimmu.2025.1548934","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>The immune-mediated rejection of transplanted organs is a complex interplay between T cells and B cells, where the recognition of HLA-derived epitopes plays a crucial role. Several algorithms of molecular compatibility have been suggested, each focusing on a specific aspect of epitope immunogenicity.</p><p><strong>Methods: </strong>Considering reported death-censored graft survival in the SRTR dataset, we evaluated four models of molecular compatibility: antibody-verified Eplets, Snow, PIRCHE-II and amino acid matching. We have statistically evaluated their co-dependency and synergistic effects between models systematically on 400,935 kidney transplantations using Cox proportional hazards and XGBoost models.</p><p><strong>Results: </strong>Multivariable models of histocompatibility generally outperformed univariable predictors, with a combined model of HLA-A, -B, -DR matching, Snow and PIRCHE-II yielding highest AUC in XGBoost and lowest BIC in Cox models. Augmentation of a clinical prediction model of pre-transplant parameters by molecular compatibility metrics improved model performance particularly considering long-term outcomes.</p><p><strong>Discussion: </strong>Our study demonstrates that the use of multiple specialized molecular HLA matching predictors improves prediction performance, thereby improving risk classification and supporting informed decision-making in kidney transplantation.</p>","PeriodicalId":12622,"journal":{"name":"Frontiers in Immunology","volume":"16 ","pages":"1548934"},"PeriodicalIF":5.7000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11850546/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Immunology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fimmu.2025.1548934","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: The immune-mediated rejection of transplanted organs is a complex interplay between T cells and B cells, where the recognition of HLA-derived epitopes plays a crucial role. Several algorithms of molecular compatibility have been suggested, each focusing on a specific aspect of epitope immunogenicity.
Methods: Considering reported death-censored graft survival in the SRTR dataset, we evaluated four models of molecular compatibility: antibody-verified Eplets, Snow, PIRCHE-II and amino acid matching. We have statistically evaluated their co-dependency and synergistic effects between models systematically on 400,935 kidney transplantations using Cox proportional hazards and XGBoost models.
Results: Multivariable models of histocompatibility generally outperformed univariable predictors, with a combined model of HLA-A, -B, -DR matching, Snow and PIRCHE-II yielding highest AUC in XGBoost and lowest BIC in Cox models. Augmentation of a clinical prediction model of pre-transplant parameters by molecular compatibility metrics improved model performance particularly considering long-term outcomes.
Discussion: Our study demonstrates that the use of multiple specialized molecular HLA matching predictors improves prediction performance, thereby improving risk classification and supporting informed decision-making in kidney transplantation.
期刊介绍:
Frontiers in Immunology is a leading journal in its field, publishing rigorously peer-reviewed research across basic, translational and clinical immunology. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics, clinicians and the public worldwide.
Frontiers in Immunology is the official Journal of the International Union of Immunological Societies (IUIS). Encompassing the entire field of Immunology, this journal welcomes papers that investigate basic mechanisms of immune system development and function, with a particular emphasis given to the description of the clinical and immunological phenotype of human immune disorders, and on the definition of their molecular basis.