Chlorogenic acid improves SPS-induced PTSD-like behaviors in rats by regulating the crosstalk between Nrf2 and NF-κB signaling pathway.

IF 7.1 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Can Tang, Jie Gao, Sen Li, Hui Cheng, Yu-Yuan Peng, Yang Ding, Huan Yang, Xin-Mei Ma, Hai-Yan Wang, Zai-Yun Long, Xiu-Min Lu, Yong-Tang Wang
{"title":"Chlorogenic acid improves SPS-induced PTSD-like behaviors in rats by regulating the crosstalk between Nrf2 and NF-κB signaling pathway.","authors":"Can Tang, Jie Gao, Sen Li, Hui Cheng, Yu-Yuan Peng, Yang Ding, Huan Yang, Xin-Mei Ma, Hai-Yan Wang, Zai-Yun Long, Xiu-Min Lu, Yong-Tang Wang","doi":"10.1016/j.freeradbiomed.2025.02.034","DOIUrl":null,"url":null,"abstract":"<p><p>Post-traumatic stress disorder (PTSD) is a long-term delayed mental disorder caused by sudden, threatening or catastrophic life events. Chlorogenic acid (CGA) is a polyphenolic acid rich in Eucommia ulmoides and other plants with potential neuroprotective effects, effectively enhances learning and memory, and exerts a beneficial impact on improving mood and attention. However, the effects and mechanisms of CGA on PTSD-like behaviors remain uncertain. This study is to explore the effects and mechanisms of CGA on PTSD by using network pharmacology analysis, molecular docking and experimental validation, and try to provide new strategies for the treatment of PTSD. The results indicated that 9 core targets with a strong binding affinity with CGA were screened out, and they were mainly enriched in apoptosis, inflammation, and oxidative stress. The followed vivo experiments indicated that CGA could alleviate single prolonged stress (SPS)-induced PTSD-like behaviors, and improve hippocampal pathological damage, apoptosis and synaptic plasticity through antioxidant and anti-inflammatory effects by regulating Nrf2 and NF-κB pathways. Thus, CGA may inhibit hippocampal neuronal apoptosis, reduce neuroinflammatory and oxdiative stress response, and enhance hippocampal synaptic plasticity through regulating the crosstalk between Nrf2 and NF-κB signaling pathway, thereby improving SPS-induced PTSD-like behaviors.</p>","PeriodicalId":12407,"journal":{"name":"Free Radical Biology and Medicine","volume":" ","pages":""},"PeriodicalIF":7.1000,"publicationDate":"2025-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Free Radical Biology and Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.freeradbiomed.2025.02.034","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Post-traumatic stress disorder (PTSD) is a long-term delayed mental disorder caused by sudden, threatening or catastrophic life events. Chlorogenic acid (CGA) is a polyphenolic acid rich in Eucommia ulmoides and other plants with potential neuroprotective effects, effectively enhances learning and memory, and exerts a beneficial impact on improving mood and attention. However, the effects and mechanisms of CGA on PTSD-like behaviors remain uncertain. This study is to explore the effects and mechanisms of CGA on PTSD by using network pharmacology analysis, molecular docking and experimental validation, and try to provide new strategies for the treatment of PTSD. The results indicated that 9 core targets with a strong binding affinity with CGA were screened out, and they were mainly enriched in apoptosis, inflammation, and oxidative stress. The followed vivo experiments indicated that CGA could alleviate single prolonged stress (SPS)-induced PTSD-like behaviors, and improve hippocampal pathological damage, apoptosis and synaptic plasticity through antioxidant and anti-inflammatory effects by regulating Nrf2 and NF-κB pathways. Thus, CGA may inhibit hippocampal neuronal apoptosis, reduce neuroinflammatory and oxdiative stress response, and enhance hippocampal synaptic plasticity through regulating the crosstalk between Nrf2 and NF-κB signaling pathway, thereby improving SPS-induced PTSD-like behaviors.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Free Radical Biology and Medicine
Free Radical Biology and Medicine 医学-内分泌学与代谢
CiteScore
14.00
自引率
4.10%
发文量
850
审稿时长
22 days
期刊介绍: Free Radical Biology and Medicine is a leading journal in the field of redox biology, which is the study of the role of reactive oxygen species (ROS) and other oxidizing agents in biological systems. The journal serves as a premier forum for publishing innovative and groundbreaking research that explores the redox biology of health and disease, covering a wide range of topics and disciplines. Free Radical Biology and Medicine also commissions Special Issues that highlight recent advances in both basic and clinical research, with a particular emphasis on the mechanisms underlying altered metabolism and redox signaling. These Special Issues aim to provide a focused platform for the latest research in the field, fostering collaboration and knowledge exchange among researchers and clinicians.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信