{"title":"Progress and challenges in thermal inactivation of norovirus in oysters.","authors":"Razieh Sadat Mirmahdi, Naim Montazeri","doi":"10.1080/10408398.2025.2467209","DOIUrl":null,"url":null,"abstract":"<p><p>Norovirus is the leading cause of viral foodborne illnesses worldwide, primarily due to its high infectivity, transmissibility, and environmental persistence. Oysters bioaccumulate norovirus particles through filter-feeding in sewage-contaminated waters and retain them for extended periods. Raw oysters are considered a significant high-risk food commody, as they can serve as vectors to transfer the pathogen to humans. Outbreaks associated with the consumption of cooked oysters indicate survival of virus particles in response to various cooking techniques. Undercooked oysters pose a substantial risk of norovirus infection, a risk that is suggested to be similar to raw oysters. Detecting human norovirus in food remains challenging due to the lack of a quantitative culture-based system that has hindered our understanding of norovirus response to heat. This article provides a critical review of the literature on mechanisms of heat inactivation and potential factors involved in the survival of norovirus in oysters during cooking. It also highlights challenges associated with norovirus detection, the necessity of risk-based research on norovirus in cooked oysters and understanding the impact of the virus-associated matrix on virus inactivation. Addressing these knowledge gaps is crucial for conducting a risk-based approach to determining cooking conditions sufficient to inactivate norovirus oysters to safe levels.</p>","PeriodicalId":10767,"journal":{"name":"Critical reviews in food science and nutrition","volume":" ","pages":"1-14"},"PeriodicalIF":7.3000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Critical reviews in food science and nutrition","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1080/10408398.2025.2467209","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Norovirus is the leading cause of viral foodborne illnesses worldwide, primarily due to its high infectivity, transmissibility, and environmental persistence. Oysters bioaccumulate norovirus particles through filter-feeding in sewage-contaminated waters and retain them for extended periods. Raw oysters are considered a significant high-risk food commody, as they can serve as vectors to transfer the pathogen to humans. Outbreaks associated with the consumption of cooked oysters indicate survival of virus particles in response to various cooking techniques. Undercooked oysters pose a substantial risk of norovirus infection, a risk that is suggested to be similar to raw oysters. Detecting human norovirus in food remains challenging due to the lack of a quantitative culture-based system that has hindered our understanding of norovirus response to heat. This article provides a critical review of the literature on mechanisms of heat inactivation and potential factors involved in the survival of norovirus in oysters during cooking. It also highlights challenges associated with norovirus detection, the necessity of risk-based research on norovirus in cooked oysters and understanding the impact of the virus-associated matrix on virus inactivation. Addressing these knowledge gaps is crucial for conducting a risk-based approach to determining cooking conditions sufficient to inactivate norovirus oysters to safe levels.
期刊介绍:
Critical Reviews in Food Science and Nutrition serves as an authoritative outlet for critical perspectives on contemporary technology, food science, and human nutrition.
With a specific focus on issues of national significance, particularly for food scientists, nutritionists, and health professionals, the journal delves into nutrition, functional foods, food safety, and food science and technology. Research areas span diverse topics such as diet and disease, antioxidants, allergenicity, microbiological concerns, flavor chemistry, nutrient roles and bioavailability, pesticides, toxic chemicals and regulation, risk assessment, food safety, and emerging food products, ingredients, and technologies.