{"title":"An epitope-directed mRNA vaccine inhibits tumor metastasis through the blockade of MICA/B α1/2 shedding.","authors":"Rui Wang, Jingni Wu, Yifeng Lin, Yufei Xiao, Bin Yang, Sheng Yao, Tianhui Pan, Zhixuan Fu, Shuyu Li, Caihua Wang, Yongliang Zhu","doi":"10.1016/j.xcrm.2025.101981","DOIUrl":null,"url":null,"abstract":"<p><p>Antigenic peptide-based mRNA vaccines have been explored for immunotherapeutic use in various types of cancer because of their advantages in activating durable and specific immune responses. However, their role in modulating tumor metastasis is still unclear. Here, we identify a conserved linear epitope-based peptide, Ma3P, located in the proteolytic region of major histocompatibility complex (MHC) class I-related chain A (MICA) α3 and further design mCM10-L, an mRNA vaccine that encodes the carrier protein CRM197 and 10 tandem repeats of Ma3P. We demonstrate that vaccination with mCM10-L induces the production of specific antibodies that block MICA/B α1/2 shedding, activate CD8<sup>+</sup> T cells and natural killer (NK) cells, and significantly inhibit MICA/B<sup>+</sup> tumor metastasis in mice. Furthermore, mCM10-L stimulation triggers the production of specific antibodies to promote MICA/B-mediated immune killing in an in-vitro-interacting human organoid model and humanized mice. Our results indicate the potential clinical application prospects of the mCM10-L vaccine.</p>","PeriodicalId":9822,"journal":{"name":"Cell Reports Medicine","volume":" ","pages":"101981"},"PeriodicalIF":11.7000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11970329/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Reports Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.xcrm.2025.101981","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/24 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Antigenic peptide-based mRNA vaccines have been explored for immunotherapeutic use in various types of cancer because of their advantages in activating durable and specific immune responses. However, their role in modulating tumor metastasis is still unclear. Here, we identify a conserved linear epitope-based peptide, Ma3P, located in the proteolytic region of major histocompatibility complex (MHC) class I-related chain A (MICA) α3 and further design mCM10-L, an mRNA vaccine that encodes the carrier protein CRM197 and 10 tandem repeats of Ma3P. We demonstrate that vaccination with mCM10-L induces the production of specific antibodies that block MICA/B α1/2 shedding, activate CD8+ T cells and natural killer (NK) cells, and significantly inhibit MICA/B+ tumor metastasis in mice. Furthermore, mCM10-L stimulation triggers the production of specific antibodies to promote MICA/B-mediated immune killing in an in-vitro-interacting human organoid model and humanized mice. Our results indicate the potential clinical application prospects of the mCM10-L vaccine.
Cell Reports MedicineBiochemistry, Genetics and Molecular Biology-Biochemistry, Genetics and Molecular Biology (all)
CiteScore
15.00
自引率
1.40%
发文量
231
审稿时长
40 days
期刊介绍:
Cell Reports Medicine is an esteemed open-access journal by Cell Press that publishes groundbreaking research in translational and clinical biomedical sciences, influencing human health and medicine.
Our journal ensures wide visibility and accessibility, reaching scientists and clinicians across various medical disciplines. We publish original research that spans from intriguing human biology concepts to all aspects of clinical work. We encourage submissions that introduce innovative ideas, forging new paths in clinical research and practice. We also welcome studies that provide vital information, enhancing our understanding of current standards of care in diagnosis, treatment, and prognosis. This encompasses translational studies, clinical trials (including long-term follow-ups), genomics, biomarker discovery, and technological advancements that contribute to diagnostics, treatment, and healthcare. Additionally, studies based on vertebrate model organisms are within the scope of the journal, as long as they directly relate to human health and disease.