Interatomic Interactions and Ion-Transport in a Polyoligomeric Silsesquioxane-based Multi-Ionic Salt Electrolyte for Lithium-Ion Batteries.

IF 2.3 3区 化学 Q3 CHEMISTRY, PHYSICAL
Shylendran Ardhra, Prabhat Prakash, Rabin Siva Dev, Stephanie L Wunder, Arun Venkatnathan
{"title":"Interatomic Interactions and Ion-Transport in a Polyoligomeric Silsesquioxane-based Multi-Ionic Salt Electrolyte for Lithium-Ion Batteries.","authors":"Shylendran Ardhra, Prabhat Prakash, Rabin Siva Dev, Stephanie L Wunder, Arun Venkatnathan","doi":"10.1002/cphc.202400983","DOIUrl":null,"url":null,"abstract":"<p><p>Polyoligomeric silsesquioxane (POSS) tailored with trifluoromethanesulfonylimide-lithium and solvated in tetraglyme (G4) is a potential electrolyte for Li-ion batteries. Using classical MD simulations, at different G4/POSS(-LiNSO2CF3)8 molar ratios, the interactions of Li+ ions with the oxygen atoms of G4 and, oxygen/nitrogen sites of the pendant tails, the behavior of POSS(--NSO2CF3)8 anion, and the mobility of species are investigated. The RDFs showed that there exist competing interactions of the O(G4), O(POSS), and N(POSS) sites with Li+ ions. The lifetime analysis indicated that Li+---O(POSS) and Li+--- N(POSS) interactions are longer-lived compared to Li+---O(G4). The morphology changes of the POSS tails upon interaction with Li+ ions were analyzed using rotational lifetimes, coiling, and end-to-end distances. The ion-speciation analysis indicated the presence of solvent-separated ion pairs (SSIPs), contact ion pairs (CIPs), and higher-order ion clusters, with SSIPs being the more dominant species at 32/1. The self-diffusion coefficients for the 32/1 system, which showed the least cation-anion interaction, followed the trend: [[EQUATION]] > [[EQUATION]] > [[EQUATION]] > [[EQUATION]]. The computed cationic transference number (t+) using the [[EQUATION]] is consistent with NMR experimental data. The t+ (and the trends with temperature) computed using the [[EQUATION]] and ionic conductivities are in good agreement.</p>","PeriodicalId":9819,"journal":{"name":"Chemphyschem","volume":" ","pages":"e202400983"},"PeriodicalIF":2.3000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemphyschem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cphc.202400983","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Polyoligomeric silsesquioxane (POSS) tailored with trifluoromethanesulfonylimide-lithium and solvated in tetraglyme (G4) is a potential electrolyte for Li-ion batteries. Using classical MD simulations, at different G4/POSS(-LiNSO2CF3)8 molar ratios, the interactions of Li+ ions with the oxygen atoms of G4 and, oxygen/nitrogen sites of the pendant tails, the behavior of POSS(--NSO2CF3)8 anion, and the mobility of species are investigated. The RDFs showed that there exist competing interactions of the O(G4), O(POSS), and N(POSS) sites with Li+ ions. The lifetime analysis indicated that Li+---O(POSS) and Li+--- N(POSS) interactions are longer-lived compared to Li+---O(G4). The morphology changes of the POSS tails upon interaction with Li+ ions were analyzed using rotational lifetimes, coiling, and end-to-end distances. The ion-speciation analysis indicated the presence of solvent-separated ion pairs (SSIPs), contact ion pairs (CIPs), and higher-order ion clusters, with SSIPs being the more dominant species at 32/1. The self-diffusion coefficients for the 32/1 system, which showed the least cation-anion interaction, followed the trend: [[EQUATION]] > [[EQUATION]] > [[EQUATION]] > [[EQUATION]]. The computed cationic transference number (t+) using the [[EQUATION]] is consistent with NMR experimental data. The t+ (and the trends with temperature) computed using the [[EQUATION]] and ionic conductivities are in good agreement.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Chemphyschem
Chemphyschem 化学-物理:原子、分子和化学物理
CiteScore
4.60
自引率
3.40%
发文量
425
审稿时长
1.1 months
期刊介绍: ChemPhysChem is one of the leading chemistry/physics interdisciplinary journals (ISI Impact Factor 2018: 3.077) for physical chemistry and chemical physics. It is published on behalf of Chemistry Europe, an association of 16 European chemical societies. ChemPhysChem is an international source for important primary and critical secondary information across the whole field of physical chemistry and chemical physics. It integrates this wide and flourishing field ranging from Solid State and Soft-Matter Research, Electro- and Photochemistry, Femtochemistry and Nanotechnology, Complex Systems, Single-Molecule Research, Clusters and Colloids, Catalysis and Surface Science, Biophysics and Physical Biochemistry, Atmospheric and Environmental Chemistry, and many more topics. ChemPhysChem is peer-reviewed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信