Role of the Transient Receptor Potential Ankyrin-1 in the Pulmonary, Vascular, and Systemic Effects of Short-Term Acrolein Inhalation in Mice: Implications for the Toxicity of Electronic Nicotine Delivery Systems.

IF 3.4 3区 医学 Q2 CARDIAC & CARDIOVASCULAR SYSTEMS
Cardiovascular Toxicology Pub Date : 2025-04-01 Epub Date: 2025-02-25 DOI:10.1007/s12012-025-09978-2
Lexiao Jin, Andre Richardson, Jordan Lynch, Alexis Miller, Israel Sithu, Pawel Lorkiewicz, Shweta Srivastava, Hong Gao, Daniel W Riggs, Sanjay Srivastava, Daniel J Conklin
{"title":"Role of the Transient Receptor Potential Ankyrin-1 in the Pulmonary, Vascular, and Systemic Effects of Short-Term Acrolein Inhalation in Mice: Implications for the Toxicity of Electronic Nicotine Delivery Systems.","authors":"Lexiao Jin, Andre Richardson, Jordan Lynch, Alexis Miller, Israel Sithu, Pawel Lorkiewicz, Shweta Srivastava, Hong Gao, Daniel W Riggs, Sanjay Srivastava, Daniel J Conklin","doi":"10.1007/s12012-025-09978-2","DOIUrl":null,"url":null,"abstract":"<p><p>The cardiovascular and pulmonary disease risks of the use of electronic nicotine delivery systems (ENDS) are uncertain. We recently showed that ENDS solvent-derived aerosol (propylene glycol and vegetable glycerin, PG:VG) exposure induced a transient receptor potential ankyrin-1 (TRPA1)-dependent endothelial dysfunction (ED) in healthy female mice. As thermal degradation of PG:VG generates aldehydes, we hypothesized that acrolein (AC), a constituent of ENDS-derived aerosol and a known TRPA1 agonist, was responsible, in part, for the observed TRPA1-dependent pulmonary and vascular effects of PG:VG. To test this, female wild-type (WT) and TRPA1 null mice were exposed by inhalation to either filtered air or AC alone, and biomarkers of exposure and of harm were measured. Compared with their genotype-matched air control group, JUUL Virginia Tobacco (VT), PG:VG, and AC alone exposures (6 h) significantly increased urinary levels of the AC metabolite, 3-hydroxypropyl mercapturic acid (3HPMA), in both female WT and TRPA1 null mice. AC exposures at 1 and 3 ppm led to the rapid onset and reversal (upon cessation) of 'respiratory braking' in female WT but not in TRPA1 null mice indicating a TRPA1 dependence. As AC stimulated TRPA1-dependent respiratory braking, we measured urinary monoamines and their metabolites after exposure as a proxy of nervous system activation. In WT mice, AC exposure suppressed levels of dopamine, metanephrine, serotonin (5HT), and 5HT metabolite (5HIAA), whereas in TRPA1 null mice only 5HT was equally suppressed by AC. To assess vascular effects, mice were exposed for 4 days to Air or AC (6 h/day, 1 ppm), and aortic function was measured ex vivo. Although endothelial-dependent relaxation was similar in air control and AC-exposed mice, aortic sensitivity to an NO donor was enhanced significantly and equally by AC in both WT and TRPA1 null mice reflective of a TRPA1-independent and compensatory effect. Collectively, AC exposure at a level present in ENDS aerosols stimulated both TRPA1-dependent and -independent pulmonary, vascular, and systemic effects. These data suggest that ENDS use may increase cardiovascular and pulmonary disease risk, in part, via AC present in ENDS-derived aerosols yet independent of either nicotine or flavorants. The level of AC present in ENDS aerosols should be lowered to an amount where it does not induce biomarkers of vascular, pulmonary, and systemic harm to mitigate potential long-term disease risk.</p>","PeriodicalId":9570,"journal":{"name":"Cardiovascular Toxicology","volume":" ","pages":"523-540"},"PeriodicalIF":3.4000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11924205/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cardiovascular Toxicology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12012-025-09978-2","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/25 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

The cardiovascular and pulmonary disease risks of the use of electronic nicotine delivery systems (ENDS) are uncertain. We recently showed that ENDS solvent-derived aerosol (propylene glycol and vegetable glycerin, PG:VG) exposure induced a transient receptor potential ankyrin-1 (TRPA1)-dependent endothelial dysfunction (ED) in healthy female mice. As thermal degradation of PG:VG generates aldehydes, we hypothesized that acrolein (AC), a constituent of ENDS-derived aerosol and a known TRPA1 agonist, was responsible, in part, for the observed TRPA1-dependent pulmonary and vascular effects of PG:VG. To test this, female wild-type (WT) and TRPA1 null mice were exposed by inhalation to either filtered air or AC alone, and biomarkers of exposure and of harm were measured. Compared with their genotype-matched air control group, JUUL Virginia Tobacco (VT), PG:VG, and AC alone exposures (6 h) significantly increased urinary levels of the AC metabolite, 3-hydroxypropyl mercapturic acid (3HPMA), in both female WT and TRPA1 null mice. AC exposures at 1 and 3 ppm led to the rapid onset and reversal (upon cessation) of 'respiratory braking' in female WT but not in TRPA1 null mice indicating a TRPA1 dependence. As AC stimulated TRPA1-dependent respiratory braking, we measured urinary monoamines and their metabolites after exposure as a proxy of nervous system activation. In WT mice, AC exposure suppressed levels of dopamine, metanephrine, serotonin (5HT), and 5HT metabolite (5HIAA), whereas in TRPA1 null mice only 5HT was equally suppressed by AC. To assess vascular effects, mice were exposed for 4 days to Air or AC (6 h/day, 1 ppm), and aortic function was measured ex vivo. Although endothelial-dependent relaxation was similar in air control and AC-exposed mice, aortic sensitivity to an NO donor was enhanced significantly and equally by AC in both WT and TRPA1 null mice reflective of a TRPA1-independent and compensatory effect. Collectively, AC exposure at a level present in ENDS aerosols stimulated both TRPA1-dependent and -independent pulmonary, vascular, and systemic effects. These data suggest that ENDS use may increase cardiovascular and pulmonary disease risk, in part, via AC present in ENDS-derived aerosols yet independent of either nicotine or flavorants. The level of AC present in ENDS aerosols should be lowered to an amount where it does not induce biomarkers of vascular, pulmonary, and systemic harm to mitigate potential long-term disease risk.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Cardiovascular Toxicology
Cardiovascular Toxicology 医学-毒理学
CiteScore
6.60
自引率
3.10%
发文量
61
审稿时长
>12 weeks
期刊介绍: Cardiovascular Toxicology is the only journal dedicated to publishing contemporary issues, timely reviews, and experimental and clinical data on toxicological aspects of cardiovascular disease. CT publishes papers that will elucidate the effects, molecular mechanisms, and signaling pathways of environmental toxicants on the cardiovascular system. Also covered are the detrimental effects of new cardiovascular drugs, and cardiovascular effects of non-cardiovascular drugs, anti-cancer chemotherapy, and gene therapy. In addition, Cardiovascular Toxicology reports safety and toxicological data on new cardiovascular and non-cardiovascular drugs.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信