Accounting for extent of non-compliance when estimating treatment effects on an ordinal outcome in randomized clinical trials.

IF 3.9 3区 医学 Q1 HEALTH CARE SCIENCES & SERVICES
Junxian Zhu, Jialiang Li, A Mark Richards, Mark Y Chan, Bee-Choo Tai
{"title":"Accounting for extent of non-compliance when estimating treatment effects on an ordinal outcome in randomized clinical trials.","authors":"Junxian Zhu, Jialiang Li, A Mark Richards, Mark Y Chan, Bee-Choo Tai","doi":"10.1186/s12874-025-02493-6","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>In randomized clinical trials (RCTs) with non-compliance, evaluating the causal effects of interventions would lead to a more precise estimation of treatment effect when the estimand of interest is the effect of treatment amongst compliers. While there is a large body of literature addressing the issue of non-compliance for continuous, binary, and time-to-event outcomes, this issue is seldom discussed for ordinal outcomes.</p><p><strong>Methods: </strong>In this paper, we consider one-sided non-compliance. We introduce an extension of the inverse probability weighting (IPW) method for handling non-compliance involving an ordinal outcome by fully utilizing the information of non-compliance and defining it as a categorical variable to describe the extent of non-compliance. This is in contrast to the usual convention where compliance is regarded as a binary variable. We provide the identification and asymptotic distribution of the proposed method. We compare the proposed method (IPW_Dnew) with intention-to-treat (ITT), per protocol (PP), instrumental variable (IV), and IPW method via a simulation study and real-life data from the JOBS II intervention trial and the IMMACULATE trial.</p><p><strong>Results: </strong>Simulation results demonstrate that the proposed method performs better than other methods in terms of bias, coverage, mean squared error, power and Type I error under various scenarios, particularly in situations with selection bias and partial compliance. In the empirical study, a substantial estimate of partial compliance by IPW_Dnew implies that there may be a partial compliance effect.</p><p><strong>Conclusion: </strong>For ordinal outcome in the presence of non-compliance, we suggest using the proposed method to estimate the causal effect of treatment amongst compliers and partial compliers, especially when there exists selection bias.</p>","PeriodicalId":9114,"journal":{"name":"BMC Medical Research Methodology","volume":"25 1","pages":"52"},"PeriodicalIF":3.9000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11852586/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Medical Research Methodology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12874-025-02493-6","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0

Abstract

Background: In randomized clinical trials (RCTs) with non-compliance, evaluating the causal effects of interventions would lead to a more precise estimation of treatment effect when the estimand of interest is the effect of treatment amongst compliers. While there is a large body of literature addressing the issue of non-compliance for continuous, binary, and time-to-event outcomes, this issue is seldom discussed for ordinal outcomes.

Methods: In this paper, we consider one-sided non-compliance. We introduce an extension of the inverse probability weighting (IPW) method for handling non-compliance involving an ordinal outcome by fully utilizing the information of non-compliance and defining it as a categorical variable to describe the extent of non-compliance. This is in contrast to the usual convention where compliance is regarded as a binary variable. We provide the identification and asymptotic distribution of the proposed method. We compare the proposed method (IPW_Dnew) with intention-to-treat (ITT), per protocol (PP), instrumental variable (IV), and IPW method via a simulation study and real-life data from the JOBS II intervention trial and the IMMACULATE trial.

Results: Simulation results demonstrate that the proposed method performs better than other methods in terms of bias, coverage, mean squared error, power and Type I error under various scenarios, particularly in situations with selection bias and partial compliance. In the empirical study, a substantial estimate of partial compliance by IPW_Dnew implies that there may be a partial compliance effect.

Conclusion: For ordinal outcome in the presence of non-compliance, we suggest using the proposed method to estimate the causal effect of treatment amongst compliers and partial compliers, especially when there exists selection bias.

求助全文
约1分钟内获得全文 求助全文
来源期刊
BMC Medical Research Methodology
BMC Medical Research Methodology 医学-卫生保健
CiteScore
6.50
自引率
2.50%
发文量
298
审稿时长
3-8 weeks
期刊介绍: BMC Medical Research Methodology is an open access journal publishing original peer-reviewed research articles in methodological approaches to healthcare research. Articles on the methodology of epidemiological research, clinical trials and meta-analysis/systematic review are particularly encouraged, as are empirical studies of the associations between choice of methodology and study outcomes. BMC Medical Research Methodology does not aim to publish articles describing scientific methods or techniques: these should be directed to the BMC journal covering the relevant biomedical subject area.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信