Dennis D Krutkin, Sydney Thomas, Simone Zuffa, Prajit Rajkumar, Rob Knight, Pieter C Dorrestein, Scott T Kelley
{"title":"To Impute or Not To Impute in Untargeted Metabolomics─That is the Compositional Question.","authors":"Dennis D Krutkin, Sydney Thomas, Simone Zuffa, Prajit Rajkumar, Rob Knight, Pieter C Dorrestein, Scott T Kelley","doi":"10.1021/jasms.4c00434","DOIUrl":null,"url":null,"abstract":"<p><p>Untargeted metabolomics often produce large datasets with missing values. These missing values are derived from biological or technical factors and can undermine statistical analyses and lead to biased biological interpretations. Imputation methods, such as <i>k</i>-Nearest Neighbors (kNN) and Random Forest (RF) regression, are commonly used, but their effects vary depending on the type of missing data, e.g., Missing Completely At Random (MCAR) and Missing Not At Random (MNAR). Here, we determined the impacts of degree and type of missing data on the accuracy of kNN and RF imputation using two datasets: a targeted metabolomic dataset with spiked-in standards and an untargeted metabolomic dataset. We also assessed the effect of compositional data approaches (CoDA), such as the centered log-ratio (CLR) transform, on data interpretation since these methods are increasingly being used in metabolomics. Overall, we found that kNN and RF performed more accurately when the proportion of missing data across samples for a metabolic feature was low. However, these imputations could not handle MNAR data and generated wildly inflated or imputed values where none should exist. Furthermore, we show that the proportion of missing values had a strong impact on the accuracy of imputation, which affected the interpretation of the results. Our results suggest imputation should be used with extreme caution even with modest levels of missing data and especially when the type of missingness is unknown.</p>","PeriodicalId":672,"journal":{"name":"Journal of the American Society for Mass Spectrometry","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Society for Mass Spectrometry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/jasms.4c00434","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Untargeted metabolomics often produce large datasets with missing values. These missing values are derived from biological or technical factors and can undermine statistical analyses and lead to biased biological interpretations. Imputation methods, such as k-Nearest Neighbors (kNN) and Random Forest (RF) regression, are commonly used, but their effects vary depending on the type of missing data, e.g., Missing Completely At Random (MCAR) and Missing Not At Random (MNAR). Here, we determined the impacts of degree and type of missing data on the accuracy of kNN and RF imputation using two datasets: a targeted metabolomic dataset with spiked-in standards and an untargeted metabolomic dataset. We also assessed the effect of compositional data approaches (CoDA), such as the centered log-ratio (CLR) transform, on data interpretation since these methods are increasingly being used in metabolomics. Overall, we found that kNN and RF performed more accurately when the proportion of missing data across samples for a metabolic feature was low. However, these imputations could not handle MNAR data and generated wildly inflated or imputed values where none should exist. Furthermore, we show that the proportion of missing values had a strong impact on the accuracy of imputation, which affected the interpretation of the results. Our results suggest imputation should be used with extreme caution even with modest levels of missing data and especially when the type of missingness is unknown.
期刊介绍:
The Journal of the American Society for Mass Spectrometry presents research papers covering all aspects of mass spectrometry, incorporating coverage of fields of scientific inquiry in which mass spectrometry can play a role.
Comprehensive in scope, the journal publishes papers on both fundamentals and applications of mass spectrometry. Fundamental subjects include instrumentation principles, design, and demonstration, structures and chemical properties of gas-phase ions, studies of thermodynamic properties, ion spectroscopy, chemical kinetics, mechanisms of ionization, theories of ion fragmentation, cluster ions, and potential energy surfaces. In addition to full papers, the journal offers Communications, Application Notes, and Accounts and Perspectives