Tirzepatide reduces body weight by increasing fat utilization via the central nervous system-adipose tissue axis in male mice

IF 5.4 2区 医学 Q1 ENDOCRINOLOGY & METABOLISM
Ailin Zhang MS, Qinhui Liu MS, Yimin Xiong MS, Jiahui Li MD, Ying Xu MD, Haiying Song MD, Xiandan Jing BS, Haixia Xu PhD, Na Yang MS, Yanping Li PhD, Li Mo PhD, Qin Tang PhD, Jinhan He PhD
{"title":"Tirzepatide reduces body weight by increasing fat utilization via the central nervous system-adipose tissue axis in male mice","authors":"Ailin Zhang MS,&nbsp;Qinhui Liu MS,&nbsp;Yimin Xiong MS,&nbsp;Jiahui Li MD,&nbsp;Ying Xu MD,&nbsp;Haiying Song MD,&nbsp;Xiandan Jing BS,&nbsp;Haixia Xu PhD,&nbsp;Na Yang MS,&nbsp;Yanping Li PhD,&nbsp;Li Mo PhD,&nbsp;Qin Tang PhD,&nbsp;Jinhan He PhD","doi":"10.1111/dom.16294","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Aims</h3>\n \n <p>Tirzepatide, a dual glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) receptor agonist, demonstrates promise as a potent medication for obesity. However, the extent to which its weight-reducing effects go beyond suppressing appetite remains unclear. This study aimed to elucidate this by establishing a pair-fed control group, effectively eliminating the influence of reduced caloric intake.</p>\n </section>\n \n <section>\n \n <h3> Materials and Methods</h3>\n \n <p>Mice fed on a chow diet or a high-fat diet received single or long-term intracerebroventricular (i.c.v.) injections of tirzepatide or vehicle. The vehicle-treated mice were pair-fed to the tirzepatide-treated group to avoid the impact induced by different caloric intakes. Body weight and food intake were monitored daily. Respiratory exchange ratio (RER) was determined in metabolic cages. Fat utilization was calculated based on RER. Parameters of lipid metabolism were evaluated.</p>\n </section>\n \n <section>\n \n <h3> Results</h3>\n \n <p>Mice receiving i.c.v. administration of tirzepatide exhibited significant reductions in body weight and fat content compared with pair-fed controls. These effects were mediated by increased lipolytic capacity in white adipose tissue and enhanced thermogenesis in brown and beige adipose tissues, leading to decreased RER and increased lipid utilization. Mechanistic investigations revealed that these effects were primarily mediated by sympathetic nervous system innervation of adipose tissues. This innervation, in turn, might be associated with the neuronal activity changes in the dorsomedial hypothalamus and the nucleus of the solitary tract within the hindbrain.</p>\n </section>\n \n <section>\n \n <h3> Conclusions</h3>\n \n <p>These findings establish a critical role for tirzepatide in shifting the substrate preference to fat utilization through the central nervous system–adipose tissue axis, promoting weight loss independent of food intake.</p>\n </section>\n </div>","PeriodicalId":158,"journal":{"name":"Diabetes, Obesity & Metabolism","volume":"27 5","pages":"2844-2856"},"PeriodicalIF":5.4000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diabetes, Obesity & Metabolism","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/dom.16294","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0

Abstract

Aims

Tirzepatide, a dual glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) receptor agonist, demonstrates promise as a potent medication for obesity. However, the extent to which its weight-reducing effects go beyond suppressing appetite remains unclear. This study aimed to elucidate this by establishing a pair-fed control group, effectively eliminating the influence of reduced caloric intake.

Materials and Methods

Mice fed on a chow diet or a high-fat diet received single or long-term intracerebroventricular (i.c.v.) injections of tirzepatide or vehicle. The vehicle-treated mice were pair-fed to the tirzepatide-treated group to avoid the impact induced by different caloric intakes. Body weight and food intake were monitored daily. Respiratory exchange ratio (RER) was determined in metabolic cages. Fat utilization was calculated based on RER. Parameters of lipid metabolism were evaluated.

Results

Mice receiving i.c.v. administration of tirzepatide exhibited significant reductions in body weight and fat content compared with pair-fed controls. These effects were mediated by increased lipolytic capacity in white adipose tissue and enhanced thermogenesis in brown and beige adipose tissues, leading to decreased RER and increased lipid utilization. Mechanistic investigations revealed that these effects were primarily mediated by sympathetic nervous system innervation of adipose tissues. This innervation, in turn, might be associated with the neuronal activity changes in the dorsomedial hypothalamus and the nucleus of the solitary tract within the hindbrain.

Conclusions

These findings establish a critical role for tirzepatide in shifting the substrate preference to fat utilization through the central nervous system–adipose tissue axis, promoting weight loss independent of food intake.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Diabetes, Obesity & Metabolism
Diabetes, Obesity & Metabolism 医学-内分泌学与代谢
CiteScore
10.90
自引率
6.90%
发文量
319
审稿时长
3-8 weeks
期刊介绍: Diabetes, Obesity and Metabolism is primarily a journal of clinical and experimental pharmacology and therapeutics covering the interrelated areas of diabetes, obesity and metabolism. The journal prioritises high-quality original research that reports on the effects of new or existing therapies, including dietary, exercise and lifestyle (non-pharmacological) interventions, in any aspect of metabolic and endocrine disease, either in humans or animal and cellular systems. ‘Metabolism’ may relate to lipids, bone and drug metabolism, or broader aspects of endocrine dysfunction. Preclinical pharmacology, pharmacokinetic studies, meta-analyses and those addressing drug safety and tolerability are also highly suitable for publication in this journal. Original research may be published as a main paper or as a research letter.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信