{"title":"Redox-Activated Proton Transfer through a Redundant Network in the Q<sub>o</sub> Site of Cytochrome <i>bc</i><sub>1</sub>.","authors":"Guilherme M Arantes","doi":"10.1021/acs.jcim.4c02361","DOIUrl":null,"url":null,"abstract":"<p><p>Proton translocation catalyzed by cytochrome <i>bc</i><sub>1</sub> (respiratory complex III) during coenzyme-Q redox cycling is a critical bioenergetic process, yet its detailed molecular mechanism remains incompletely understood. In this study, the energetics of the long-range proton transfers through multiple proton-conducting wires in the Q<sub>o</sub> site of the <i>bc</i><sub>1</sub> complex was investigated computationally using hybrid QM/MM simulations and a specialized reaction coordinate. Key reactive groups and proton transfer mechanisms were characterized, confirming the propionate-A group of heme <i>b</i><sub><i>L</i></sub> as a plausible proton acceptor. Upon coenzyme-Q oxidation, a Grotthuss hopping mechanism is activated, facilitating proton transfer along three distinct pathways with comparable barriers and stability. These pathways operate redundantly, forming a robust proton-conducting network, and account for the unusual experimental behavior observed in single-point mutations. Energetic analyses exclude charged closed-shell species as likely intermediates and propose a reaction sequence for coenzyme-Q oxidation proceeding as QH<sub>2</sub> → QH<sup>•</sup> → Q<sup>0</sup>, either via coupled proton-electron transfers or stepwise mechanisms involving open-shell intermediates. These findings elucidate mechanistic details of the Q-cycle and improve our understanding of the catalytic reactions supporting redox-activated proton transfer in respiratory enzymes.</p>","PeriodicalId":44,"journal":{"name":"Journal of Chemical Information and Modeling ","volume":" ","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Information and Modeling ","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.jcim.4c02361","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Proton translocation catalyzed by cytochrome bc1 (respiratory complex III) during coenzyme-Q redox cycling is a critical bioenergetic process, yet its detailed molecular mechanism remains incompletely understood. In this study, the energetics of the long-range proton transfers through multiple proton-conducting wires in the Qo site of the bc1 complex was investigated computationally using hybrid QM/MM simulations and a specialized reaction coordinate. Key reactive groups and proton transfer mechanisms were characterized, confirming the propionate-A group of heme bL as a plausible proton acceptor. Upon coenzyme-Q oxidation, a Grotthuss hopping mechanism is activated, facilitating proton transfer along three distinct pathways with comparable barriers and stability. These pathways operate redundantly, forming a robust proton-conducting network, and account for the unusual experimental behavior observed in single-point mutations. Energetic analyses exclude charged closed-shell species as likely intermediates and propose a reaction sequence for coenzyme-Q oxidation proceeding as QH2 → QH• → Q0, either via coupled proton-electron transfers or stepwise mechanisms involving open-shell intermediates. These findings elucidate mechanistic details of the Q-cycle and improve our understanding of the catalytic reactions supporting redox-activated proton transfer in respiratory enzymes.
期刊介绍:
The Journal of Chemical Information and Modeling publishes papers reporting new methodology and/or important applications in the fields of chemical informatics and molecular modeling. Specific topics include the representation and computer-based searching of chemical databases, molecular modeling, computer-aided molecular design of new materials, catalysts, or ligands, development of new computational methods or efficient algorithms for chemical software, and biopharmaceutical chemistry including analyses of biological activity and other issues related to drug discovery.
Astute chemists, computer scientists, and information specialists look to this monthly’s insightful research studies, programming innovations, and software reviews to keep current with advances in this integral, multidisciplinary field.
As a subscriber you’ll stay abreast of database search systems, use of graph theory in chemical problems, substructure search systems, pattern recognition and clustering, analysis of chemical and physical data, molecular modeling, graphics and natural language interfaces, bibliometric and citation analysis, and synthesis design and reactions databases.