{"title":"Large Model Era: Deep Learning in Osteoporosis Drug Discovery.","authors":"Junlin Xu, Xiaobo Wen, Li Sun, Kunyue Xing, Linyuan Xue, Sha Zhou, Jiayi Hu, Zhijuan Ai, Qian Kong, Zishu Wen, Li Guo, Minglu Hao, Dongming Xing","doi":"10.1021/acs.jcim.4c02264","DOIUrl":null,"url":null,"abstract":"<p><p>Osteoporosis is a systemic microstructural degradation of bone tissue, often accompanied by fractures, pain, and other complications, resulting in a decline in patients' life quality. In response to the increased incidence of osteoporosis, related drug discovery has attracted more and more attention, but it is often faced with challenges due to long development cycle and high cost. Deep learning with powerful data processing capabilities has shown significant advantages in the field of drug discovery. With the development of technology, it is more and more applied to all stages of drug discovery. In particular, large models, which have been developed rapidly recently, provide new methods for understanding disease mechanisms and promoting drug discovery because of their large parameters and ability to deal with complex tasks. This review introduces the traditional models and large models in the deep learning domain, systematically summarizes their applications in each stage of drug discovery, and analyzes their application prospect in osteoporosis drug discovery. Finally, the advantages and limitations of large models are discussed in depth, in order to help future drug discovery.</p>","PeriodicalId":44,"journal":{"name":"Journal of Chemical Information and Modeling ","volume":" ","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Information and Modeling ","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.jcim.4c02264","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Osteoporosis is a systemic microstructural degradation of bone tissue, often accompanied by fractures, pain, and other complications, resulting in a decline in patients' life quality. In response to the increased incidence of osteoporosis, related drug discovery has attracted more and more attention, but it is often faced with challenges due to long development cycle and high cost. Deep learning with powerful data processing capabilities has shown significant advantages in the field of drug discovery. With the development of technology, it is more and more applied to all stages of drug discovery. In particular, large models, which have been developed rapidly recently, provide new methods for understanding disease mechanisms and promoting drug discovery because of their large parameters and ability to deal with complex tasks. This review introduces the traditional models and large models in the deep learning domain, systematically summarizes their applications in each stage of drug discovery, and analyzes their application prospect in osteoporosis drug discovery. Finally, the advantages and limitations of large models are discussed in depth, in order to help future drug discovery.
期刊介绍:
The Journal of Chemical Information and Modeling publishes papers reporting new methodology and/or important applications in the fields of chemical informatics and molecular modeling. Specific topics include the representation and computer-based searching of chemical databases, molecular modeling, computer-aided molecular design of new materials, catalysts, or ligands, development of new computational methods or efficient algorithms for chemical software, and biopharmaceutical chemistry including analyses of biological activity and other issues related to drug discovery.
Astute chemists, computer scientists, and information specialists look to this monthly’s insightful research studies, programming innovations, and software reviews to keep current with advances in this integral, multidisciplinary field.
As a subscriber you’ll stay abreast of database search systems, use of graph theory in chemical problems, substructure search systems, pattern recognition and clustering, analysis of chemical and physical data, molecular modeling, graphics and natural language interfaces, bibliometric and citation analysis, and synthesis design and reactions databases.