{"title":"Conformational Analysis of Poly(trimethylene carbonate) and Poly(butylene carbonate) and Structure-Property Relationships of Aliphatic Polycarbonates.","authors":"Yuko Uesugi, Yuji Sasanuma","doi":"10.1021/acs.jpcb.4c07698","DOIUrl":null,"url":null,"abstract":"<p><p>Conformational analysis of poly(trimethylene carbonate) (PTMC) and poly(butylene carbonate) (PBC) was conducted. The most stable conformations in the spacers, O(CH<sub>2</sub>)<sub><i>y</i></sub>O, of PTMC (<i>y</i> = 3) and PBC (<i>y</i> = 4) were found to be tg<sup>±</sup>g<sup>±</sup>t and tg<sup>±</sup>tg<sup>∓</sup>t, respectively. The former conformation leads to a long zigzag form for PTMC, while the latter extends the PBC chain along the molecular axis. The O-C and OC-CC bonds in the PTMC spacer prefer trans and gauche conformations, respectively, while the O-C, OC-CC, and CC-CC bonds of PBC show trans, gauche, and trans preferences, respectively. The characteristic ratios of PTMC and PBC in a nonpolar environment at 25 °C were evaluated to be 6.89 and 8.27, respectively, significantly larger than those of poly(ethylene carbonate) (PEC, 2.42) and head-to-tail isotactic poly(propylene carbonate) (PPC, 2.36). As the spacer length increases (PEC, PPC → PTMC → PBC), the negative charge on the carbonate group becomes delocalized, reducing interchain electrostatic repulsions. Consequently, PEC and PPC remain amorphous, whereas PTMC and PBC can only crystallize with difficulty. However, the weak interchain attractions in both crystals result in low enthalpies of fusion, and, correspondingly, relatively low melting points.</p>","PeriodicalId":60,"journal":{"name":"The Journal of Physical Chemistry B","volume":" ","pages":"2637-2646"},"PeriodicalIF":2.8000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry B","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpcb.4c07698","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/25 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Conformational analysis of poly(trimethylene carbonate) (PTMC) and poly(butylene carbonate) (PBC) was conducted. The most stable conformations in the spacers, O(CH2)yO, of PTMC (y = 3) and PBC (y = 4) were found to be tg±g±t and tg±tg∓t, respectively. The former conformation leads to a long zigzag form for PTMC, while the latter extends the PBC chain along the molecular axis. The O-C and OC-CC bonds in the PTMC spacer prefer trans and gauche conformations, respectively, while the O-C, OC-CC, and CC-CC bonds of PBC show trans, gauche, and trans preferences, respectively. The characteristic ratios of PTMC and PBC in a nonpolar environment at 25 °C were evaluated to be 6.89 and 8.27, respectively, significantly larger than those of poly(ethylene carbonate) (PEC, 2.42) and head-to-tail isotactic poly(propylene carbonate) (PPC, 2.36). As the spacer length increases (PEC, PPC → PTMC → PBC), the negative charge on the carbonate group becomes delocalized, reducing interchain electrostatic repulsions. Consequently, PEC and PPC remain amorphous, whereas PTMC and PBC can only crystallize with difficulty. However, the weak interchain attractions in both crystals result in low enthalpies of fusion, and, correspondingly, relatively low melting points.
期刊介绍:
An essential criterion for acceptance of research articles in the journal is that they provide new physical insight. Please refer to the New Physical Insights virtual issue on what constitutes new physical insight. Manuscripts that are essentially reporting data or applications of data are, in general, not suitable for publication in JPC B.