Growth rate dependence of the permeability and percolation threshold of young sea ice.

IF 3.3 3区 化学 Q2 CHEMISTRY, PHYSICAL
Sönke Maus
{"title":"Growth rate dependence of the permeability and percolation threshold of young sea ice.","authors":"Sönke Maus","doi":"10.1039/d4fd00172a","DOIUrl":null,"url":null,"abstract":"<p><p>The permeability of sea ice is difficult to observe, and physically based permeability models are lacking so far. Here a model for the permeability of sea ice is presented that combines extensive microstructure observations and modelling with directed percolation theory. The model predicts the dependence of sea ice permeability on brine porosity and growth rate, as well as a percolation transition to impermeable sea ice due to necking of the pores. It is validated by numerical simulations of sea ice permeability on 3D images from X-ray microtomographic imaging and by other existing permeability data. A fundamental model result is that the percolation threshold of sea ice scales as <i>ϕ</i><sub>c</sub> ∝ <i>a</i><sub>0</sub><sup>-1</sup> where <i>a</i><sub>0</sub> is the plate or brine layer spacing. As the plate spacing decreases with growth velocity <i>V</i>, this implies that the percolation threshold increases as <i>ϕ</i><sub>c</sub> ∝ <i>V</i><sup>1/3</sup>, with the cubic root of the growth rate. For growth rates of natural sea ice the percolation threshold is expected to be in the range of 1 to 4 percent volume fraction of brine. While developed for columnar sea ice, a simple modification for granular surface ice also agrees with observations. The model is valid for sea ice during the growth phase, prior to warming and melting. Permeability modelling of spring and summer sea ice, with wider secondary brine channels present, requires 3D pore space observations in warming sea ice that currently are sparse.</p>","PeriodicalId":76,"journal":{"name":"Faraday Discussions","volume":" ","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Faraday Discussions","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d4fd00172a","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The permeability of sea ice is difficult to observe, and physically based permeability models are lacking so far. Here a model for the permeability of sea ice is presented that combines extensive microstructure observations and modelling with directed percolation theory. The model predicts the dependence of sea ice permeability on brine porosity and growth rate, as well as a percolation transition to impermeable sea ice due to necking of the pores. It is validated by numerical simulations of sea ice permeability on 3D images from X-ray microtomographic imaging and by other existing permeability data. A fundamental model result is that the percolation threshold of sea ice scales as ϕca0-1 where a0 is the plate or brine layer spacing. As the plate spacing decreases with growth velocity V, this implies that the percolation threshold increases as ϕcV1/3, with the cubic root of the growth rate. For growth rates of natural sea ice the percolation threshold is expected to be in the range of 1 to 4 percent volume fraction of brine. While developed for columnar sea ice, a simple modification for granular surface ice also agrees with observations. The model is valid for sea ice during the growth phase, prior to warming and melting. Permeability modelling of spring and summer sea ice, with wider secondary brine channels present, requires 3D pore space observations in warming sea ice that currently are sparse.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Faraday Discussions
Faraday Discussions 化学-物理化学
自引率
0.00%
发文量
259
期刊介绍: Discussion summary and research papers from discussion meetings that focus on rapidly developing areas of physical chemistry and its interfaces
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信