Association Between CYP2D6 Genotypes and Serum Concentrations of Mirtazapine and Mianserin

IF 2.7 4区 医学 Q2 PHARMACOLOGY & PHARMACY
Kristine Hole, Espen Molden
{"title":"Association Between CYP2D6 Genotypes and Serum Concentrations of Mirtazapine and Mianserin","authors":"Kristine Hole,&nbsp;Espen Molden","doi":"10.1111/bcpt.70013","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>The aim of the present study was to investigate the effect of <i>CYP2D6</i> genotypes on mirtazapine and mianserin serum concentrations. Patients were included retrospectively from a therapeutic drug monitoring service. Multiple linear regression analysis was used to investigate the effect of <i>CYP2D6</i> genotype, age and sex on mirtazapine and mianserin concentration-to-dose (C/D) ratio. The study included 2315 mirtazapine patients and 474 mianserin patients who were assigned to the genotype-predicted phenotype groups of CYP2D6 poor metabolizers (PMs), intermediate metabolizers (IMs), normal metabolizers (NMs) and ultrarapid metabolizers (UMs). Multiple linear regression analysis revealed 18% and 14% higher mirtazapine C/D ratio in CYP2D6 PMs and IMs, respectively, compared with NMs (<i>p</i> ≤ 0.004). For mianserin, the C/D ratio was 80% and 45% higher in PMs and IMs, respectively, compared with NMs (<i>p</i> &lt; 0.001). The C/D ratio in UMs did not differ from NMs for either drug (<i>p</i> ≥ 0.3). In conclusion, <i>CYP2D6</i> genotype was only associated with a minor change in mirtazapine serum concentration. The association between <i>CYP2D6</i> genotype and mianserin serum concentration was greater, with 80% higher mianserin C/D ratio in CYP2D6 PMs compared with NMs.</p>\n </div>","PeriodicalId":8733,"journal":{"name":"Basic & Clinical Pharmacology & Toxicology","volume":"136 4","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Basic & Clinical Pharmacology & Toxicology","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/bcpt.70013","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

The aim of the present study was to investigate the effect of CYP2D6 genotypes on mirtazapine and mianserin serum concentrations. Patients were included retrospectively from a therapeutic drug monitoring service. Multiple linear regression analysis was used to investigate the effect of CYP2D6 genotype, age and sex on mirtazapine and mianserin concentration-to-dose (C/D) ratio. The study included 2315 mirtazapine patients and 474 mianserin patients who were assigned to the genotype-predicted phenotype groups of CYP2D6 poor metabolizers (PMs), intermediate metabolizers (IMs), normal metabolizers (NMs) and ultrarapid metabolizers (UMs). Multiple linear regression analysis revealed 18% and 14% higher mirtazapine C/D ratio in CYP2D6 PMs and IMs, respectively, compared with NMs (p ≤ 0.004). For mianserin, the C/D ratio was 80% and 45% higher in PMs and IMs, respectively, compared with NMs (p < 0.001). The C/D ratio in UMs did not differ from NMs for either drug (p ≥ 0.3). In conclusion, CYP2D6 genotype was only associated with a minor change in mirtazapine serum concentration. The association between CYP2D6 genotype and mianserin serum concentration was greater, with 80% higher mianserin C/D ratio in CYP2D6 PMs compared with NMs.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.60
自引率
6.50%
发文量
126
审稿时长
1 months
期刊介绍: Basic & Clinical Pharmacology and Toxicology is an independent journal, publishing original scientific research in all fields of toxicology, basic and clinical pharmacology. This includes experimental animal pharmacology and toxicology and molecular (-genetic), biochemical and cellular pharmacology and toxicology. It also includes all aspects of clinical pharmacology: pharmacokinetics, pharmacodynamics, therapeutic drug monitoring, drug/drug interactions, pharmacogenetics/-genomics, pharmacoepidemiology, pharmacovigilance, pharmacoeconomics, randomized controlled clinical trials and rational pharmacotherapy. For all compounds used in the studies, the chemical constitution and composition should be known, also for natural compounds.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信