{"title":"Association Between CYP2D6 Genotypes and Serum Concentrations of Mirtazapine and Mianserin","authors":"Kristine Hole, Espen Molden","doi":"10.1111/bcpt.70013","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>The aim of the present study was to investigate the effect of <i>CYP2D6</i> genotypes on mirtazapine and mianserin serum concentrations. Patients were included retrospectively from a therapeutic drug monitoring service. Multiple linear regression analysis was used to investigate the effect of <i>CYP2D6</i> genotype, age and sex on mirtazapine and mianserin concentration-to-dose (C/D) ratio. The study included 2315 mirtazapine patients and 474 mianserin patients who were assigned to the genotype-predicted phenotype groups of CYP2D6 poor metabolizers (PMs), intermediate metabolizers (IMs), normal metabolizers (NMs) and ultrarapid metabolizers (UMs). Multiple linear regression analysis revealed 18% and 14% higher mirtazapine C/D ratio in CYP2D6 PMs and IMs, respectively, compared with NMs (<i>p</i> ≤ 0.004). For mianserin, the C/D ratio was 80% and 45% higher in PMs and IMs, respectively, compared with NMs (<i>p</i> < 0.001). The C/D ratio in UMs did not differ from NMs for either drug (<i>p</i> ≥ 0.3). In conclusion, <i>CYP2D6</i> genotype was only associated with a minor change in mirtazapine serum concentration. The association between <i>CYP2D6</i> genotype and mianserin serum concentration was greater, with 80% higher mianserin C/D ratio in CYP2D6 PMs compared with NMs.</p>\n </div>","PeriodicalId":8733,"journal":{"name":"Basic & Clinical Pharmacology & Toxicology","volume":"136 4","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Basic & Clinical Pharmacology & Toxicology","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/bcpt.70013","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
The aim of the present study was to investigate the effect of CYP2D6 genotypes on mirtazapine and mianserin serum concentrations. Patients were included retrospectively from a therapeutic drug monitoring service. Multiple linear regression analysis was used to investigate the effect of CYP2D6 genotype, age and sex on mirtazapine and mianserin concentration-to-dose (C/D) ratio. The study included 2315 mirtazapine patients and 474 mianserin patients who were assigned to the genotype-predicted phenotype groups of CYP2D6 poor metabolizers (PMs), intermediate metabolizers (IMs), normal metabolizers (NMs) and ultrarapid metabolizers (UMs). Multiple linear regression analysis revealed 18% and 14% higher mirtazapine C/D ratio in CYP2D6 PMs and IMs, respectively, compared with NMs (p ≤ 0.004). For mianserin, the C/D ratio was 80% and 45% higher in PMs and IMs, respectively, compared with NMs (p < 0.001). The C/D ratio in UMs did not differ from NMs for either drug (p ≥ 0.3). In conclusion, CYP2D6 genotype was only associated with a minor change in mirtazapine serum concentration. The association between CYP2D6 genotype and mianserin serum concentration was greater, with 80% higher mianserin C/D ratio in CYP2D6 PMs compared with NMs.
期刊介绍:
Basic & Clinical Pharmacology and Toxicology is an independent journal, publishing original scientific research in all fields of toxicology, basic and clinical pharmacology. This includes experimental animal pharmacology and toxicology and molecular (-genetic), biochemical and cellular pharmacology and toxicology. It also includes all aspects of clinical pharmacology: pharmacokinetics, pharmacodynamics, therapeutic drug monitoring, drug/drug interactions, pharmacogenetics/-genomics, pharmacoepidemiology, pharmacovigilance, pharmacoeconomics, randomized controlled clinical trials and rational pharmacotherapy. For all compounds used in the studies, the chemical constitution and composition should be known, also for natural compounds.