Qian-Qian Yu, Jie Wang, Xiang-Lin Gu, Sudao He, Shenghan Zhang
{"title":"An Attention-Based Detection Method of Fatigue Cracks on Steel","authors":"Qian-Qian Yu, Jie Wang, Xiang-Lin Gu, Sudao He, Shenghan Zhang","doi":"10.1155/stc/7487687","DOIUrl":null,"url":null,"abstract":"<div>\n <p>Steel structures are susceptible to fatigue cracking under cyclic loading, which can lead to catastrophic structural failure. In the incipient phase of crack propagation, the width of fatigue cracks typically measures less than 0.1 mm, making them difficult to detect using standard imaging techniques. This study presents a novel approach to crack detection on steel structures by tracking the displacement field on the structural surface derived from visual data. Initially, video or sequential images of the target structure under loading are captured and processed using an enhanced dense feature-matching model. The surface displacement field is then computed from the coordinate difference of the numerous matched feature points. By extracting discontinuities within the displacement field, fatigue cracks can be localized. Two case studies were conducted to validate the methodology: one involving a with a pre-existing crack and another steel plate with fatigue crack propagation. The findings indicate that the proposed method can be used to detect minuscule cracks, with crack widths as small as 5 μm. Factors potentially influcencing the method, including the texture of the steel surface, the region of interest (ROI) area ratio, the density of matching, and the resolution of input images, were discussed. Compared to traditional image-based semantic segmentation techniques, this approach is more convenient and precise, offering a promising avenue for the nondestructive evaluation of steel structures in civil engineering.</p>\n </div>","PeriodicalId":49471,"journal":{"name":"Structural Control & Health Monitoring","volume":"2025 1","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/stc/7487687","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structural Control & Health Monitoring","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/stc/7487687","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Steel structures are susceptible to fatigue cracking under cyclic loading, which can lead to catastrophic structural failure. In the incipient phase of crack propagation, the width of fatigue cracks typically measures less than 0.1 mm, making them difficult to detect using standard imaging techniques. This study presents a novel approach to crack detection on steel structures by tracking the displacement field on the structural surface derived from visual data. Initially, video or sequential images of the target structure under loading are captured and processed using an enhanced dense feature-matching model. The surface displacement field is then computed from the coordinate difference of the numerous matched feature points. By extracting discontinuities within the displacement field, fatigue cracks can be localized. Two case studies were conducted to validate the methodology: one involving a with a pre-existing crack and another steel plate with fatigue crack propagation. The findings indicate that the proposed method can be used to detect minuscule cracks, with crack widths as small as 5 μm. Factors potentially influcencing the method, including the texture of the steel surface, the region of interest (ROI) area ratio, the density of matching, and the resolution of input images, were discussed. Compared to traditional image-based semantic segmentation techniques, this approach is more convenient and precise, offering a promising avenue for the nondestructive evaluation of steel structures in civil engineering.
期刊介绍:
The Journal Structural Control and Health Monitoring encompasses all theoretical and technological aspects of structural control, structural health monitoring theory and smart materials and structures. The journal focuses on aerospace, civil, infrastructure and mechanical engineering applications.
Original contributions based on analytical, computational and experimental methods are solicited in three main areas: monitoring, control, and smart materials and structures, covering subjects such as system identification, health monitoring, health diagnostics, multi-functional materials, signal processing, sensor technology, passive, active and semi active control schemes and implementations, shape memory alloys, piezoelectrics and mechatronics.
Also of interest are actuator design, dynamic systems, dynamic stability, artificial intelligence tools, data acquisition, wireless communications, measurements, MEMS/NEMS sensors for local damage detection, optical fibre sensors for health monitoring, remote control of monitoring systems, sensor-logger combinations for mobile applications, corrosion sensors, scour indicators and experimental techniques.