Jonah K. Stephan, Taylor Knerr, Zhen Gu, Hong Li, Kenneth R. Brittian, Sujith Dassanayaka, Richa Singhal, Yibing Nong, Steven P. Jones, Marcin Wysoczynski
{"title":"Neutrophil-secreted CHI3L1 exacerbates cardiac dysfunction and inflammation after myocardial infarction","authors":"Jonah K. Stephan, Taylor Knerr, Zhen Gu, Hong Li, Kenneth R. Brittian, Sujith Dassanayaka, Richa Singhal, Yibing Nong, Steven P. Jones, Marcin Wysoczynski","doi":"10.1096/fj.202401654R","DOIUrl":null,"url":null,"abstract":"<p>Myocardial infarction (MI) triggers acute inflammation, marked by neutrophil infiltration. Although neutrophils are central to this response, the exact role of various neutrophil-derived factors is not fully understood. Clinical studies have linked one such enigmatic factor, chitinase-3 like-1, to MI outcomes. Hence, we investigated its role in post-MI remodeling. We found that chitinase-3 like-1 (CHI3L1) is upregulated after MI and secreted by activated neutrophils but does not directly affect neutrophil activity. To assess whether increased CHI3L1 influences ventricular remodeling, we subjected mice to non-reperfused MI and administered recombinant CHI3L1. Increased CHI3L1 levels worsened ventricular remodeling. In contrast, CHI3L1-deficient mice showed reduced ventricular remodeling after MI. To explore the underlying mechanisms, we assessed interactions with other cells known to be important in ventricular remodeling. Immunoprofiling of infarcted CHI3L1-deficient mouse hearts revealed a faster decline in neutrophil and monocyte numbers, indicating quicker resolution of inflammation. These findings provide direct evidence that CHI3L1 exacerbates ventricular inflammation and remodeling following MI through gain- and loss-of-function approaches.</p>","PeriodicalId":50455,"journal":{"name":"The FASEB Journal","volume":"39 5","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1096/fj.202401654R","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The FASEB Journal","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1096/fj.202401654R","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Myocardial infarction (MI) triggers acute inflammation, marked by neutrophil infiltration. Although neutrophils are central to this response, the exact role of various neutrophil-derived factors is not fully understood. Clinical studies have linked one such enigmatic factor, chitinase-3 like-1, to MI outcomes. Hence, we investigated its role in post-MI remodeling. We found that chitinase-3 like-1 (CHI3L1) is upregulated after MI and secreted by activated neutrophils but does not directly affect neutrophil activity. To assess whether increased CHI3L1 influences ventricular remodeling, we subjected mice to non-reperfused MI and administered recombinant CHI3L1. Increased CHI3L1 levels worsened ventricular remodeling. In contrast, CHI3L1-deficient mice showed reduced ventricular remodeling after MI. To explore the underlying mechanisms, we assessed interactions with other cells known to be important in ventricular remodeling. Immunoprofiling of infarcted CHI3L1-deficient mouse hearts revealed a faster decline in neutrophil and monocyte numbers, indicating quicker resolution of inflammation. These findings provide direct evidence that CHI3L1 exacerbates ventricular inflammation and remodeling following MI through gain- and loss-of-function approaches.
期刊介绍:
The FASEB Journal publishes international, transdisciplinary research covering all fields of biology at every level of organization: atomic, molecular, cell, tissue, organ, organismic and population. While the journal strives to include research that cuts across the biological sciences, it also considers submissions that lie within one field, but may have implications for other fields as well. The journal seeks to publish basic and translational research, but also welcomes reports of pre-clinical and early clinical research. In addition to research, review, and hypothesis submissions, The FASEB Journal also seeks perspectives, commentaries, book reviews, and similar content related to the life sciences in its Up Front section.