Security Enhancement in 5G Networks by Identifying Attacks Using Optimized Cosine Convolutional Neural Network

IF 0.9 Q4 TELECOMMUNICATIONS
Premalatha Santhanamari, Vijayakumar Kathirgamam, Lakshmisridevi Subramanian, Thamaraikannan Panneerselvam, Rathish Chirakkal Radhakrishnan
{"title":"Security Enhancement in 5G Networks by Identifying Attacks Using Optimized Cosine Convolutional Neural Network","authors":"Premalatha Santhanamari,&nbsp;Vijayakumar Kathirgamam,&nbsp;Lakshmisridevi Subramanian,&nbsp;Thamaraikannan Panneerselvam,&nbsp;Rathish Chirakkal Radhakrishnan","doi":"10.1002/itl2.70003","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>The exponential growth of 5G networks has introduced advanced capabilities but also heightened susceptibility to sophisticated cyberattacks. To address this, a robust and optimized security framework is proposed, leveraging a Cosine Convolutional Neural Network (CCNN) for attack detection. By emphasizing angular correlations in data, the CCNN improves feature extraction by substituting cosine similarity-based adjustments for conventional convolution processes. To maximize the CCNN's performance, the Exponential Distribution Optimizer (EDO) is employed optimize CCNN. The optimal configuration of CCNN is achieved using EDO's probabilistic search mechanism, which is inspired by exponential distribution and helps to maintain a balanced exploration-exploitation strategy. This integrated approach significantly improves detection accuracy, robustness, and scalability while maintaining low computational overhead. Comprehensive evaluations demonstrate the model's efficacy in identifying diverse attack patterns in 5G networks, outperforming conventional methods. The proposed framework establishes a new benchmark for secure, intelligent 5G infrastructures, contributing to the advancement of cybersecurity in next-generation networks. The introduced approach attains higher accuracy of 99%.</p>\n </div>","PeriodicalId":100725,"journal":{"name":"Internet Technology Letters","volume":"8 2","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Internet Technology Letters","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/itl2.70003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

The exponential growth of 5G networks has introduced advanced capabilities but also heightened susceptibility to sophisticated cyberattacks. To address this, a robust and optimized security framework is proposed, leveraging a Cosine Convolutional Neural Network (CCNN) for attack detection. By emphasizing angular correlations in data, the CCNN improves feature extraction by substituting cosine similarity-based adjustments for conventional convolution processes. To maximize the CCNN's performance, the Exponential Distribution Optimizer (EDO) is employed optimize CCNN. The optimal configuration of CCNN is achieved using EDO's probabilistic search mechanism, which is inspired by exponential distribution and helps to maintain a balanced exploration-exploitation strategy. This integrated approach significantly improves detection accuracy, robustness, and scalability while maintaining low computational overhead. Comprehensive evaluations demonstrate the model's efficacy in identifying diverse attack patterns in 5G networks, outperforming conventional methods. The proposed framework establishes a new benchmark for secure, intelligent 5G infrastructures, contributing to the advancement of cybersecurity in next-generation networks. The introduced approach attains higher accuracy of 99%.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信