Structural, optical, electrical and photocatalytic properties Ce-doped SnO2 nanoparticles for photoelectrochemical applications

IF 3.4 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Hamid Khan, Muhammad Noman Khan, Matiullah Khan, Yaseen Iqbal, Syed Muhammad Ahsan, Hafeez Ullah
{"title":"Structural, optical, electrical and photocatalytic properties Ce-doped SnO2 nanoparticles for photoelectrochemical applications","authors":"Hamid Khan,&nbsp;Muhammad Noman Khan,&nbsp;Matiullah Khan,&nbsp;Yaseen Iqbal,&nbsp;Syed Muhammad Ahsan,&nbsp;Hafeez Ullah","doi":"10.1186/s40712-025-00220-z","DOIUrl":null,"url":null,"abstract":"<div><p>SnO<sub>2</sub> nanoparticles accompanied by various concentrations of Ce as dopant material were prepared to extend the optical absorption spectrum near the visible spectrum. The Ce-doped SnO<sub>2</sub> NPs at 0.5% (w/w) exhibit significantly higher photocatalytic ability compared to pure SnO<sub>2</sub>. This enhancement has potential applications in environmental remediation, energy storage, and optoelectronic devices. The microstructures and optical properties of the prepared samples were characterized by XRD, FTIR, EDS, SEM, and UV–vis DRS. The results showed that the nanoparticles are in the tetragonal rutile SnO<sub>2</sub> phase. Increasing Ce concentration (over 0.5% (w/w)) shifted the absorption edge towards higher wavelengths and the band gap energy drops from 3.620 to 3.031 eV. The FTIR spectrum confirmed the O–Sn–O bond information in the synthesized samples. The SEM images showed the formation of nearly spherical nanoparticles. Ce-doped SnO<sub>2</sub> NPs have smaller primary particles than SnO<sub>2</sub> NPs. Reduction in the band gap due to an increase in defects by Ce doping is found and confirmed by the UV–Vis spectra. The existence of Sn and O elements was confirmed by the observed EDS spectra. A plausible photocatalytic mechanism was proposed for the degradation of Methylene blue under UV light to examine the photocatalytic activity of SnO<sub>2</sub> and Ce-doped SnO<sub>2</sub> NPs photocatalyst. The Ce-doped SnO<sub>2</sub> NPs display improved photocatalytic activity compared to SnO<sub>2</sub>. The influence of Ce concentration doping on the electrical properties was observed at room temperature. Impedance decreases with the frequency and Ce concentration while ac conductivity is increases with the frequency and Ce concentration. The dielectric constant and the dielectric loss rise up with the Ce doping and decrease with the frequency. Among the synthesized samples, the Ce-doped SnO<sub>2</sub> depict improved ability of photodegradation and the optimal ability of SnO<sub>2</sub> nanoparticles was achieved at 0.5% Ce doping.</p></div>","PeriodicalId":592,"journal":{"name":"International Journal of Mechanical and Materials Engineering","volume":"20 1","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://jmsg.springeropen.com/counter/pdf/10.1186/s40712-025-00220-z","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mechanical and Materials Engineering","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1186/s40712-025-00220-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

SnO2 nanoparticles accompanied by various concentrations of Ce as dopant material were prepared to extend the optical absorption spectrum near the visible spectrum. The Ce-doped SnO2 NPs at 0.5% (w/w) exhibit significantly higher photocatalytic ability compared to pure SnO2. This enhancement has potential applications in environmental remediation, energy storage, and optoelectronic devices. The microstructures and optical properties of the prepared samples were characterized by XRD, FTIR, EDS, SEM, and UV–vis DRS. The results showed that the nanoparticles are in the tetragonal rutile SnO2 phase. Increasing Ce concentration (over 0.5% (w/w)) shifted the absorption edge towards higher wavelengths and the band gap energy drops from 3.620 to 3.031 eV. The FTIR spectrum confirmed the O–Sn–O bond information in the synthesized samples. The SEM images showed the formation of nearly spherical nanoparticles. Ce-doped SnO2 NPs have smaller primary particles than SnO2 NPs. Reduction in the band gap due to an increase in defects by Ce doping is found and confirmed by the UV–Vis spectra. The existence of Sn and O elements was confirmed by the observed EDS spectra. A plausible photocatalytic mechanism was proposed for the degradation of Methylene blue under UV light to examine the photocatalytic activity of SnO2 and Ce-doped SnO2 NPs photocatalyst. The Ce-doped SnO2 NPs display improved photocatalytic activity compared to SnO2. The influence of Ce concentration doping on the electrical properties was observed at room temperature. Impedance decreases with the frequency and Ce concentration while ac conductivity is increases with the frequency and Ce concentration. The dielectric constant and the dielectric loss rise up with the Ce doping and decrease with the frequency. Among the synthesized samples, the Ce-doped SnO2 depict improved ability of photodegradation and the optimal ability of SnO2 nanoparticles was achieved at 0.5% Ce doping.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.60
自引率
0.00%
发文量
1
审稿时长
13 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信