p-Laplacian problem in a Riemannian manifold

IF 1.4 3区 数学 Q1 MATHEMATICS
J. Vanterler da C. Sousa, Lamine Mbarki, Leandro S. Tavares
{"title":"p-Laplacian problem in a Riemannian manifold","authors":"J. Vanterler da C. Sousa,&nbsp;Lamine Mbarki,&nbsp;Leandro S. Tavares","doi":"10.1007/s13324-025-01031-3","DOIUrl":null,"url":null,"abstract":"<div><p>This paper is divided into two parts. First, we will prove the existence of solutions of the <i>p</i>-Laplacian equation in the Riemannian manifold in the space <span>\\({\\mathcal {H}}^{\\alpha ,p}_{loc}({\\mathcal {N}})\\)</span>. On the other hand, we will give a criterion to obtain a positive lower bound for <span>\\(\\lambda _{1,p}(\\Omega )\\)</span>, where is a bounded domain <span>\\(\\Omega \\subset {\\mathcal {N}}\\)</span>. In the first result, we do not consider a bounded subset on the Riemannian manifold <span>\\({\\mathcal {N}}\\)</span>. \n</p></div>","PeriodicalId":48860,"journal":{"name":"Analysis and Mathematical Physics","volume":"15 2","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analysis and Mathematical Physics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s13324-025-01031-3","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper is divided into two parts. First, we will prove the existence of solutions of the p-Laplacian equation in the Riemannian manifold in the space \({\mathcal {H}}^{\alpha ,p}_{loc}({\mathcal {N}})\). On the other hand, we will give a criterion to obtain a positive lower bound for \(\lambda _{1,p}(\Omega )\), where is a bounded domain \(\Omega \subset {\mathcal {N}}\). In the first result, we do not consider a bounded subset on the Riemannian manifold \({\mathcal {N}}\).

黎曼流形中的p-拉普拉斯问题
本文分为两部分。首先,我们将证明空间\({\mathcal {H}}^{\alpha ,p}_{loc}({\mathcal {N}})\)中黎曼流形中p-拉普拉斯方程解的存在性。另一方面,我们将给出一个准则来获得\(\lambda _{1,p}(\Omega )\)的正下界,其中是一个有界域\(\Omega \subset {\mathcal {N}}\)。在第一个结果中,我们不考虑黎曼流形\({\mathcal {N}}\)上的有界子集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Analysis and Mathematical Physics
Analysis and Mathematical Physics MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.70
自引率
0.00%
发文量
122
期刊介绍: Analysis and Mathematical Physics (AMP) publishes current research results as well as selected high-quality survey articles in real, complex, harmonic; and geometric analysis originating and or having applications in mathematical physics. The journal promotes dialog among specialists in these areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信