The design of a real-time monitoring and intelligent optimization data analysis framework for power plant production systems by 5G networks

Q2 Energy
Xihong Chuang, Le Li, Lei Zhu, Mingyi Wei, Yongsheng Qiu, Yanqing Xin
{"title":"The design of a real-time monitoring and intelligent optimization data analysis framework for power plant production systems by 5G networks","authors":"Xihong Chuang,&nbsp;Le Li,&nbsp;Lei Zhu,&nbsp;Mingyi Wei,&nbsp;Yongsheng Qiu,&nbsp;Yanqing Xin","doi":"10.1186/s42162-025-00487-8","DOIUrl":null,"url":null,"abstract":"<div><p>The current power plant production systems face issues such as insufficient monitoring accuracy, data transmission delays, and low energy utilization efficiency. In response, this study proposes a real-time monitoring and intelligent data analysis system based on Fifth-Generation Mobile Communication Network (5G) technology. Building upon an analysis of the limitations inherent in traditional systems, the experiment capitalizes on the extensive connectivity capabilities of 5G to design an intelligent monitoring architecture tailored for power plant production environments. To enhance system performance, the study introduces an innovative resource scheduling and data analysis model that combines an improved Hybrid Advantage Actor-Critic (A3C) algorithm with a Dueling Deep Q-Network (DQN) algorithm. This model integrates the global optimization capabilities of the A3C algorithm with the efficient learning mechanism of the Dueling DQN algorithm to optimize communication resource scheduling and energy storage management within a 5G Cloud Radio Access Network (C-RAN) environment. Simulation experiments demonstrate that this approach significantly improves system energy efficiency, optimizes resource utilization, and reduces energy waste. The results show that data transmission delays decreased by 25%, energy utilization increased by 18.25%, and renewable energy consumption rose by 12.55%. This study offers a new technical approach for the intelligent upgrade and green, efficient operation of power plant production systems, providing both theoretical and practical support for the optimization of power systems in the 5G era.</p></div>","PeriodicalId":538,"journal":{"name":"Energy Informatics","volume":"8 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://energyinformatics.springeropen.com/counter/pdf/10.1186/s42162-025-00487-8","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Informatics","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1186/s42162-025-00487-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Energy","Score":null,"Total":0}
引用次数: 0

Abstract

The current power plant production systems face issues such as insufficient monitoring accuracy, data transmission delays, and low energy utilization efficiency. In response, this study proposes a real-time monitoring and intelligent data analysis system based on Fifth-Generation Mobile Communication Network (5G) technology. Building upon an analysis of the limitations inherent in traditional systems, the experiment capitalizes on the extensive connectivity capabilities of 5G to design an intelligent monitoring architecture tailored for power plant production environments. To enhance system performance, the study introduces an innovative resource scheduling and data analysis model that combines an improved Hybrid Advantage Actor-Critic (A3C) algorithm with a Dueling Deep Q-Network (DQN) algorithm. This model integrates the global optimization capabilities of the A3C algorithm with the efficient learning mechanism of the Dueling DQN algorithm to optimize communication resource scheduling and energy storage management within a 5G Cloud Radio Access Network (C-RAN) environment. Simulation experiments demonstrate that this approach significantly improves system energy efficiency, optimizes resource utilization, and reduces energy waste. The results show that data transmission delays decreased by 25%, energy utilization increased by 18.25%, and renewable energy consumption rose by 12.55%. This study offers a new technical approach for the intelligent upgrade and green, efficient operation of power plant production systems, providing both theoretical and practical support for the optimization of power systems in the 5G era.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Energy Informatics
Energy Informatics Computer Science-Computer Networks and Communications
CiteScore
5.50
自引率
0.00%
发文量
34
审稿时长
5 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信