{"title":"Simple and general bounds on quantum random access codes","authors":"Máté Farkas, Nikolai Miklin, Armin Tavakoli","doi":"10.22331/q-2025-02-25-1643","DOIUrl":null,"url":null,"abstract":"Random access codes are a type of communication task that is widely used in quantum information science. The optimal average success probability that can be achieved through classical strategies is known for any random access code. However, only a few cases are solved exactly for quantum random access codes. In this paper, we provide bounds for the fully general setting of n independent variables, each selected from a d-dimensional classical alphabet and encoded in a $D$-dimensional quantum system subject to an arbitrary quantum measurement. The bound recovers the exactly known special cases, and we demonstrate numerically that even though the bound is not tight overall, it can still yield a good approximation.","PeriodicalId":20807,"journal":{"name":"Quantum","volume":"27 1","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.22331/q-2025-02-25-1643","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Random access codes are a type of communication task that is widely used in quantum information science. The optimal average success probability that can be achieved through classical strategies is known for any random access code. However, only a few cases are solved exactly for quantum random access codes. In this paper, we provide bounds for the fully general setting of n independent variables, each selected from a d-dimensional classical alphabet and encoded in a $D$-dimensional quantum system subject to an arbitrary quantum measurement. The bound recovers the exactly known special cases, and we demonstrate numerically that even though the bound is not tight overall, it can still yield a good approximation.
QuantumPhysics and Astronomy-Physics and Astronomy (miscellaneous)
CiteScore
9.20
自引率
10.90%
发文量
241
审稿时长
16 weeks
期刊介绍:
Quantum is an open-access peer-reviewed journal for quantum science and related fields. Quantum is non-profit and community-run: an effort by researchers and for researchers to make science more open and publishing more transparent and efficient.