{"title":"The Virtual Quantum Device (VQD): A tool for detailed emulation of quantum computers","authors":"Cica Gustiani, Tyson Jones, Simon C. Benjamin","doi":"10.22331/q-2025-02-25-1642","DOIUrl":null,"url":null,"abstract":"We present the Virtual Quantum Device (VQD) platform, a system based on the QuEST quantum emulator. Through the use of VQDs, non-expert users can emulate specific quantum computers with detailed error models, bespoke gate sets and connectivities. The platform boasts an intuitive interface, powerful visualisation, and compatibility with high-performance computation for effective testing and optimisation of complex quantum algorithms or ideas across a range of quantum computing hardware. We create and explore five families of VQDs corresponding to trapped ions, nitrogen-vacancy-centres, neutral atom arrays, silicon quantum dot spins, and superconducting devices. Each is highly configurable through a set of tailored parameters. We showcase the key characteristics of each virtual device, providing practical examples of the tool's usefulness and highlighting each device's specific attributes. By offering user-friendly encapsulated descriptions of diverse quantum hardware, the VQD platform offers researchers the ability to rapidly explore algorithms and protocols in a realistic setting; meanwhile hardware experts can create their own VQDs to compare with their experiments.","PeriodicalId":20807,"journal":{"name":"Quantum","volume":"24 1","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.22331/q-2025-02-25-1642","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
We present the Virtual Quantum Device (VQD) platform, a system based on the QuEST quantum emulator. Through the use of VQDs, non-expert users can emulate specific quantum computers with detailed error models, bespoke gate sets and connectivities. The platform boasts an intuitive interface, powerful visualisation, and compatibility with high-performance computation for effective testing and optimisation of complex quantum algorithms or ideas across a range of quantum computing hardware. We create and explore five families of VQDs corresponding to trapped ions, nitrogen-vacancy-centres, neutral atom arrays, silicon quantum dot spins, and superconducting devices. Each is highly configurable through a set of tailored parameters. We showcase the key characteristics of each virtual device, providing practical examples of the tool's usefulness and highlighting each device's specific attributes. By offering user-friendly encapsulated descriptions of diverse quantum hardware, the VQD platform offers researchers the ability to rapidly explore algorithms and protocols in a realistic setting; meanwhile hardware experts can create their own VQDs to compare with their experiments.
QuantumPhysics and Astronomy-Physics and Astronomy (miscellaneous)
CiteScore
9.20
自引率
10.90%
发文量
241
审稿时长
16 weeks
期刊介绍:
Quantum is an open-access peer-reviewed journal for quantum science and related fields. Quantum is non-profit and community-run: an effort by researchers and for researchers to make science more open and publishing more transparent and efficient.