Secrecy Coding for the Binary Symmetric Wiretap Channel via Linear Programming

IF 6.3 1区 计算机科学 Q1 COMPUTER SCIENCE, THEORY & METHODS
Ali Nikkhah;Morteza Shoushtari;Bahareh Akhbari;Willie K. Harrison
{"title":"Secrecy Coding for the Binary Symmetric Wiretap Channel via Linear Programming","authors":"Ali Nikkhah;Morteza Shoushtari;Bahareh Akhbari;Willie K. Harrison","doi":"10.1109/TIFS.2025.3545301","DOIUrl":null,"url":null,"abstract":"In this paper, we use a linear programming (LP) optimization approach to evaluate the equivocation when coding over a wiretap channel model where the main channel is noiseless and the eavesdropper’s channel is a binary symmetric channel (BSC). Using this technique, we present a numerically-derived upper bound for the achievable secrecy rate in the finite blocklength regime that is tighter than traditional infinite blocklength bounds. We also propose a secrecy coding technique that outperforms random binning codes. When there is one overhead bit, this coding technique is optimum and achieves the newly derived bound. For cases with additional bits of overhead, our coding scheme can achieve equivocation rates close to the new bound. Furthermore, we explore the patterns of the generator matrix and the parity-check matrix for linear codes and we present binning techniques for both linear and nonlinear codes using two different approaches: recursive and non-recursive. To our knowledge, this is the first optimization solution for secrecy coding obtained through linear programming. Our new bounds and codes mark a significant breakthrough towards understanding fundamental limits of performance (and how to achieve them in some instances) for the binary symmetric wiretap channel with real finite blocklength coding constructions. Our techniques are especially useful for codes of small to medium blocklength, such as those that may be required by applications with small payloads, such as the Internet of Things.","PeriodicalId":13492,"journal":{"name":"IEEE Transactions on Information Forensics and Security","volume":"20 ","pages":"2450-2463"},"PeriodicalIF":6.3000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Information Forensics and Security","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10902583/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we use a linear programming (LP) optimization approach to evaluate the equivocation when coding over a wiretap channel model where the main channel is noiseless and the eavesdropper’s channel is a binary symmetric channel (BSC). Using this technique, we present a numerically-derived upper bound for the achievable secrecy rate in the finite blocklength regime that is tighter than traditional infinite blocklength bounds. We also propose a secrecy coding technique that outperforms random binning codes. When there is one overhead bit, this coding technique is optimum and achieves the newly derived bound. For cases with additional bits of overhead, our coding scheme can achieve equivocation rates close to the new bound. Furthermore, we explore the patterns of the generator matrix and the parity-check matrix for linear codes and we present binning techniques for both linear and nonlinear codes using two different approaches: recursive and non-recursive. To our knowledge, this is the first optimization solution for secrecy coding obtained through linear programming. Our new bounds and codes mark a significant breakthrough towards understanding fundamental limits of performance (and how to achieve them in some instances) for the binary symmetric wiretap channel with real finite blocklength coding constructions. Our techniques are especially useful for codes of small to medium blocklength, such as those that may be required by applications with small payloads, such as the Internet of Things.
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Information Forensics and Security
IEEE Transactions on Information Forensics and Security 工程技术-工程:电子与电气
CiteScore
14.40
自引率
7.40%
发文量
234
审稿时长
6.5 months
期刊介绍: The IEEE Transactions on Information Forensics and Security covers the sciences, technologies, and applications relating to information forensics, information security, biometrics, surveillance and systems applications that incorporate these features
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信