{"title":"Relative Entropy Based Jamming Signal Design Against Radar Target Detection","authors":"Zhou Xu;Bo Tang;Weihua Ai;Jiahua Zhu","doi":"10.1109/TSP.2025.3544305","DOIUrl":null,"url":null,"abstract":"In modern electronic warfare, active jamming is an important way to prevent the target from being detected by the radar sensors. This paper considers the problem of designing effective jamming signals with limited jamming power. By taking the relative entropy as the figure of merit, we formulate the jamming signal design as a matrix optimization problem which is Non-Polynomial (NP) hard in general. To solve the resultant problem, we conceive an iterative algorithm, named by Relative Entropy Jamming Optimization Algorithm (REJOA), based on combining the Majorization Minimization (MM) technique and the matrix factorization together. The conceived algorithm updates the optimization variable in a closed form (or semi-closed form) at each iteration, and guarantees theoretical convergence. Finally, we compare our design with the Mutual Information (MI) based design and the Signal to Jamming plus Noise Ratio (SJNR) based design through numerical experiments. Results highlight that, compared with the state-of-the-art designs, our design achieves better jamming performance with the same jamming power.","PeriodicalId":13330,"journal":{"name":"IEEE Transactions on Signal Processing","volume":"73 ","pages":"1200-1215"},"PeriodicalIF":4.6000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10904098/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
In modern electronic warfare, active jamming is an important way to prevent the target from being detected by the radar sensors. This paper considers the problem of designing effective jamming signals with limited jamming power. By taking the relative entropy as the figure of merit, we formulate the jamming signal design as a matrix optimization problem which is Non-Polynomial (NP) hard in general. To solve the resultant problem, we conceive an iterative algorithm, named by Relative Entropy Jamming Optimization Algorithm (REJOA), based on combining the Majorization Minimization (MM) technique and the matrix factorization together. The conceived algorithm updates the optimization variable in a closed form (or semi-closed form) at each iteration, and guarantees theoretical convergence. Finally, we compare our design with the Mutual Information (MI) based design and the Signal to Jamming plus Noise Ratio (SJNR) based design through numerical experiments. Results highlight that, compared with the state-of-the-art designs, our design achieves better jamming performance with the same jamming power.
期刊介绍:
The IEEE Transactions on Signal Processing covers novel theory, algorithms, performance analyses and applications of techniques for the processing, understanding, learning, retrieval, mining, and extraction of information from signals. The term “signal” includes, among others, audio, video, speech, image, communication, geophysical, sonar, radar, medical and musical signals. Examples of topics of interest include, but are not limited to, information processing and the theory and application of filtering, coding, transmitting, estimating, detecting, analyzing, recognizing, synthesizing, recording, and reproducing signals.