{"title":"A recombinant protein vaccine induces protective immunity against SARS-CoV-2 JN.1 and XBB-lineage subvariants","authors":"Jingyun Yang, Weiqi Hong, Huashan Shi, Zhenling Wang, Cai He, Hong Lei, Hong Yan, Aqu Alu, Danyi Ao, Zimin Chen, Yanan Zhou, Hao Yang, Yun Yang, Wenhai Yu, Cong Tang, Junbin Wang, Bai Li, Qing Huang, Hongbo Hu, Wei Cheng, Haohao Dong, Jian Lei, Lu Chen, Xikun Zhou, Li Yang, Wei Wang, Guobo Shen, Jinliang Yang, Zhiwei Zhao, Xiangrong Song, Qiangming Sun, Youchun Wang, Shuaiyao Lu, Jiong Li, Guangwen Lu, Weimin Li, Yuquan Wei, Xiawei Wei","doi":"10.1038/s41392-025-02154-6","DOIUrl":null,"url":null,"abstract":"<p>The emergence of XBB- and JN.1-lineages with remarkable immune evasion characteristics have led to rises in breakthrough infections within populations. In addition, the unfavorable impacts of immune imprinting, stemming from continuous exposure to antigens from circulated viruses, have been observed to incline immune response against earlier lineages, thereby declining the neutralization to newly emerged Omicron subvariants. In response to this, the advancement of next-generation vaccines against COVID-19 targeting components from new subvariants such as XBB-lineage is imperative. In the current study, a self-assembled trimeric recombinant protein (RBD<sub>XBB.1.5</sub>-HR) was generated by concatenating the sequences of the receptor binding domain (RBD) derived from XBB.1.5 with heptad-repeat 1 (HR1) and HR2 sequences from the spike S2 subunit. Adjuvanted-RBD<sub>XBB.1.5</sub>-HR induced robust humoral and cellular immune responses, characterized by elevated neutralization against JN.1-inculuded subvariants and a substantial population of antigen-specific T memory cells. Protective immunity conferred by RBD<sub>XBB.1.5</sub>-HR vaccine was preserved post-immunization, as evidenced by germinal center B (GC B) and T follicular helper (Tfh) responses, sustained neutralization potency, and an increase in memory B cells (MBCs) and long-lived plasma cells (LLPCs). The RBD<sub>XBB.1.5</sub>-HR vaccine showed a favorable boosting effect when administered heterologously after three doses of inactivated virus (IV) and mRNA vaccines. Significantly, it provided protection against live Omicron EG.5.1 viruses in vivo. The monovalent RBD<sub>XBB.1.5</sub>-HR vaccine showed favorable safety and immunogenicity, boosting neutralizing antibodies against JN.1- and XBB-lineage subvariants in individuals with prior COVID-19 vaccinations. These findings highlight its clinical potential in safeguarding against circulating Omicron subvariants.</p>","PeriodicalId":21766,"journal":{"name":"Signal Transduction and Targeted Therapy","volume":"51 1","pages":""},"PeriodicalIF":40.8000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Signal Transduction and Targeted Therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41392-025-02154-6","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The emergence of XBB- and JN.1-lineages with remarkable immune evasion characteristics have led to rises in breakthrough infections within populations. In addition, the unfavorable impacts of immune imprinting, stemming from continuous exposure to antigens from circulated viruses, have been observed to incline immune response against earlier lineages, thereby declining the neutralization to newly emerged Omicron subvariants. In response to this, the advancement of next-generation vaccines against COVID-19 targeting components from new subvariants such as XBB-lineage is imperative. In the current study, a self-assembled trimeric recombinant protein (RBDXBB.1.5-HR) was generated by concatenating the sequences of the receptor binding domain (RBD) derived from XBB.1.5 with heptad-repeat 1 (HR1) and HR2 sequences from the spike S2 subunit. Adjuvanted-RBDXBB.1.5-HR induced robust humoral and cellular immune responses, characterized by elevated neutralization against JN.1-inculuded subvariants and a substantial population of antigen-specific T memory cells. Protective immunity conferred by RBDXBB.1.5-HR vaccine was preserved post-immunization, as evidenced by germinal center B (GC B) and T follicular helper (Tfh) responses, sustained neutralization potency, and an increase in memory B cells (MBCs) and long-lived plasma cells (LLPCs). The RBDXBB.1.5-HR vaccine showed a favorable boosting effect when administered heterologously after three doses of inactivated virus (IV) and mRNA vaccines. Significantly, it provided protection against live Omicron EG.5.1 viruses in vivo. The monovalent RBDXBB.1.5-HR vaccine showed favorable safety and immunogenicity, boosting neutralizing antibodies against JN.1- and XBB-lineage subvariants in individuals with prior COVID-19 vaccinations. These findings highlight its clinical potential in safeguarding against circulating Omicron subvariants.
期刊介绍:
Signal Transduction and Targeted Therapy is an open access journal that focuses on timely publication of cutting-edge discoveries and advancements in basic science and clinical research related to signal transduction and targeted therapy.
Scope: The journal covers research on major human diseases, including, but not limited to:
Cancer,Cardiovascular diseases,Autoimmune diseases,Nervous system diseases.