Discretization of Total Variation in Optimization with Integrality Constraints

IF 2.9 2区 数学 Q1 MATHEMATICS, APPLIED
Annika Schiemann, Paul Manns
{"title":"Discretization of Total Variation in Optimization with Integrality Constraints","authors":"Annika Schiemann, Paul Manns","doi":"10.1137/24m164608x","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Numerical Analysis, Volume 63, Issue 1, Page 437-460, February 2025. <br/> Abstract. We introduce discretizations of infinite-dimensional optimization problems with total variation regularization and integrality constraints on the optimization variables. We advance the discretization of the dual formulation of the total variation term with Raviart–Thomas functions, which is known from the literature for certain convex problems. Since we have an integrality constraint, the previous analysis from Caillaud and Chambolle [IMA J. Numer. Anal., 43 (2022), pp. 692–736] no longer holds. Even weaker [math]-convergence results no longer hold because the recovery sequences generally need to attain noninteger values to recover the total variation of the limit function. We solve this issue by introducing a discretization of the input functions on an embedded, finer mesh. A superlinear coupling of the mesh sizes implies an averaging on the coarser mesh of the Raviart–Thomas ansatz, which enables us to recover the total variation of integer-valued limit functions with integer-valued discretized input functions. Moreover, we are able to estimate the discretized total variation of the recovery sequence by the total variation of its limit and an error depending on the mesh size ratio. For the discretized optimization problems, we additionally add a constraint that vanishes in the limit and enforces compactness of the sequence of minimizers, which yields their convergence to a minimizer of the original problem. This constraint contains a degree of freedom whose admissible range is determined. Its choice may have a strong impact on the solutions in practice as we demonstrate with an example from imaging.","PeriodicalId":49527,"journal":{"name":"SIAM Journal on Numerical Analysis","volume":"18 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Numerical Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/24m164608x","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

SIAM Journal on Numerical Analysis, Volume 63, Issue 1, Page 437-460, February 2025.
Abstract. We introduce discretizations of infinite-dimensional optimization problems with total variation regularization and integrality constraints on the optimization variables. We advance the discretization of the dual formulation of the total variation term with Raviart–Thomas functions, which is known from the literature for certain convex problems. Since we have an integrality constraint, the previous analysis from Caillaud and Chambolle [IMA J. Numer. Anal., 43 (2022), pp. 692–736] no longer holds. Even weaker [math]-convergence results no longer hold because the recovery sequences generally need to attain noninteger values to recover the total variation of the limit function. We solve this issue by introducing a discretization of the input functions on an embedded, finer mesh. A superlinear coupling of the mesh sizes implies an averaging on the coarser mesh of the Raviart–Thomas ansatz, which enables us to recover the total variation of integer-valued limit functions with integer-valued discretized input functions. Moreover, we are able to estimate the discretized total variation of the recovery sequence by the total variation of its limit and an error depending on the mesh size ratio. For the discretized optimization problems, we additionally add a constraint that vanishes in the limit and enforces compactness of the sequence of minimizers, which yields their convergence to a minimizer of the original problem. This constraint contains a degree of freedom whose admissible range is determined. Its choice may have a strong impact on the solutions in practice as we demonstrate with an example from imaging.
具有完整性约束的优化中总变分的离散化
SIAM数值分析杂志,第63卷,第1期,第437-460页,2025年2月。摘要。引入了具有全变分正则化和优化变量完整性约束的无限维优化问题的离散化方法。利用文献中已知的关于某些凸问题的Raviart-Thomas函数,提出了全变分项的对偶形式的离散化。由于我们有一个完整性约束,以前的分析由Caillaud和Chambolle [IMA J. number]。分析的。, 43 (2022), pp. 692-736]不再成立。甚至较弱的[数学]收敛结果也不再成立,因为恢复序列通常需要获得非整数值才能恢复极限函数的总变化。我们通过在嵌入的更细的网格上引入输入函数的离散化来解决这个问题。网格尺寸的超线性耦合意味着对Raviart-Thomas ansatz的粗网格进行平均,这使我们能够恢复整值极限函数与整值离散输入函数的总变化。此外,我们还可以通过恢复序列的极限总变分和依赖于网格尺寸比的误差来估计恢复序列的离散化总变分。对于离散优化问题,我们额外增加了一个约束,该约束在极限中消失,并强制最小化序列的紧性,从而使它们收敛到原始问题的最小化。这个约束包含一个可接受范围已确定的自由度。它的选择可能对实践中的解决方案有很大的影响,正如我们用成像的例子所展示的那样。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.80
自引率
6.90%
发文量
110
审稿时长
4-8 weeks
期刊介绍: SIAM Journal on Numerical Analysis (SINUM) contains research articles on the development and analysis of numerical methods. Topics include the rigorous study of convergence of algorithms, their accuracy, their stability, and their computational complexity. Also included are results in mathematical analysis that contribute to algorithm analysis, and computational results that demonstrate algorithm behavior and applicability.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信