BART-Survival: A Bayesian machine learning approach to survival analyses in Python.

Jacob Tiegs, Julia Raykin, Ilia Rochlin
{"title":"BART-Survival: A Bayesian machine learning approach to survival analyses in Python.","authors":"Jacob Tiegs, Julia Raykin, Ilia Rochlin","doi":"10.21105/joss.07213","DOIUrl":null,"url":null,"abstract":"<p><p>BART-Survival is a Python package that allows time-to-event (survival) analyses in discrete-time using the non-parametric machine learning algorithm, Bayesian Additive Regression Trees (BART). BART-Survival combines the performance of the BART algorithm with the complementary data and model formatting required to complete the survival analyses. The library contains a convenient application programming interface (API) that allows a simple approach when using the library for survival analyses, while maintaining capabilities for added complexity when desired. The package is intended for analysts exploring use of flexible non-parametric alternatives to traditional (semi-)parametric survival analyses.</p>","PeriodicalId":94101,"journal":{"name":"Journal of open source software","volume":"10 105","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11848778/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of open source software","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21105/joss.07213","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

BART-Survival is a Python package that allows time-to-event (survival) analyses in discrete-time using the non-parametric machine learning algorithm, Bayesian Additive Regression Trees (BART). BART-Survival combines the performance of the BART algorithm with the complementary data and model formatting required to complete the survival analyses. The library contains a convenient application programming interface (API) that allows a simple approach when using the library for survival analyses, while maintaining capabilities for added complexity when desired. The package is intended for analysts exploring use of flexible non-parametric alternatives to traditional (semi-)parametric survival analyses.

BART-Survival:在Python中使用贝叶斯机器学习方法进行生存分析。
BART- survival是一个Python包,它允许使用非参数机器学习算法贝叶斯加性回归树(BART)在离散时间内进行时间到事件(生存)分析。BART- survival将BART算法的性能与完成生存分析所需的补充数据和模型格式相结合。该库包含一个方便的应用程序编程接口(API),它允许在使用库进行生存分析时使用简单的方法,同时在需要时保留增加复杂性的功能。该软件包旨在为分析师探索使用灵活的非参数替代传统(半)参数生存分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
审稿时长
3 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信