[Research Progress and Prospects of Minimally Invasive Surgical Instrument Segmentation Methods Based on Artificial Intelligence].

Q4 Medicine
Weimin Cheng, Xiaohua Wu, Jing Xiong
{"title":"[Research Progress and Prospects of Minimally Invasive Surgical Instrument Segmentation Methods Based on Artificial Intelligence].","authors":"Weimin Cheng, Xiaohua Wu, Jing Xiong","doi":"10.12455/j.issn.1671-7104.240436","DOIUrl":null,"url":null,"abstract":"<p><p>With the development of artificial intelligence technology and the growing demand for minimally invasive surgery, the intelligentization of minimally invasive surgery has become a current research hotspot. Surgical instrument segmentation is a highly promising technology that can enhance the performance of minimally invasive endoscopic imaging systems, surgical video analysis systems, and other related systems. This article summarizes the semantic and instance segmentation methods of minimally invasive surgical instruments based on deep learning, deeply analyzes the supervision methods of training algorithms, network structure improvements, and attention mechanisms, and then discusses the methods based on the Segment Anything Model. Given that deep learning methods have extremely high requirements for data, current data augmentation methods have also been explored. Finally, a summary and outlook on instrument segmentation technology are provided.</p>","PeriodicalId":52535,"journal":{"name":"中国医疗器械杂志","volume":"49 1","pages":"15-23"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"中国医疗器械杂志","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.12455/j.issn.1671-7104.240436","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

Abstract

With the development of artificial intelligence technology and the growing demand for minimally invasive surgery, the intelligentization of minimally invasive surgery has become a current research hotspot. Surgical instrument segmentation is a highly promising technology that can enhance the performance of minimally invasive endoscopic imaging systems, surgical video analysis systems, and other related systems. This article summarizes the semantic and instance segmentation methods of minimally invasive surgical instruments based on deep learning, deeply analyzes the supervision methods of training algorithms, network structure improvements, and attention mechanisms, and then discusses the methods based on the Segment Anything Model. Given that deep learning methods have extremely high requirements for data, current data augmentation methods have also been explored. Finally, a summary and outlook on instrument segmentation technology are provided.

[基于人工智能的微创手术器械分割方法研究进展与展望]。
随着人工智能技术的发展和微创手术需求的不断增长,微创手术的智能化已成为当前的研究热点。手术器械分割是一项非常有前途的技术,可以提高微创内镜成像系统、手术视频分析系统和其他相关系统的性能。本文总结了基于深度学习的微创手术器械的语义分割和实例分割方法,深入分析了训练算法的监督方法、网络结构的改进和注意机制,并讨论了基于Segment Anything Model的方法。鉴于深度学习方法对数据的要求极高,目前的数据增强方法也被探索。最后,对仪器分割技术进行了总结和展望。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
中国医疗器械杂志
中国医疗器械杂志 Medicine-Medicine (all)
CiteScore
0.40
自引率
0.00%
发文量
8086
期刊介绍: Chinese Journal of Medical Instrumentation mainly reports on the development, progress, research and development, production, clinical application, management, and maintenance of medical devices and biomedical engineering. Its aim is to promote the exchange of information on medical devices and biomedical engineering in China and turn the journal into a high-quality academic journal that leads academic directions and advocates academic debates.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信