Fuhao Kang, Qi Yin, Yanan Liu, Lin Huang, Yan Hang, Jilun Ye, Xu Zhang
{"title":"[Design and Implementation of Non-Invasive Hemodynamic Monitoring System Based on Impedance Cardiogram Method].","authors":"Fuhao Kang, Qi Yin, Yanan Liu, Lin Huang, Yan Hang, Jilun Ye, Xu Zhang","doi":"10.12455/j.issn.1671-7104.240364","DOIUrl":null,"url":null,"abstract":"<p><p>Hemodynamic monitoring can reflect cardiac function and blood perfusion and is an indispensable monitoring method in clinical practice. Invasive hemodynamic monitoring methods represented by the thermodilution method are limited in their clinical application scope because they require vascular cannulation. Non-invasive hemodynamic monitoring has attracted extensive attention from medical companies and clinicians at home and abroad in recent years due to its advantages such as safety, non-invasiveness, continuous monitoring, simple operation, and low cost. This paper designs a non-invasive hemodynamic monitoring system based on the impedance cardiography, including hardware, algorithm, software design, and performance parameter evaluation. Among them, the hardware part mainly includes a differential high-frequency constant current source stimulation circuit, impedance cardiogram signal acquisition, and ECG signal acquisition circuit. Signal processing includes wave filtering, impedance cardiogram signal calibration, and ECG signal and impedance cardiogram signal feature point recognition. According to the collected impedance cardiogram and ECG signals, hemodynamic parameters such as heart rate (HR), stroke volume (SV), cardiac output (CO), stroke index (SI), cardiac index (CI), and cardiac contractility index (ICON) are calculated based on the Nyboer thoracic cylinder model. After testing, the key technical indicators of the system hardware are better than that of the relevant medical device standards. The system was used to collect impedance cardiogram and ECG signal data from 40 volunteers. The calculated HR, SV, and CO, three important hemodynamic indicators, were compared with the ICONCore non-invasive cardiac output monitor of OSYPKA Medical in Germany. Their Pearson correlation coefficients were 0.992 ( <i>P</i><0.001), 0.948 ( <i>P</i><0.001), and 0.933 ( <i>P</i><0.001), respectively, verifying that the designed system has high accuracy and reliability.</p>","PeriodicalId":52535,"journal":{"name":"中国医疗器械杂志","volume":"49 1","pages":"80-88"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"中国医疗器械杂志","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.12455/j.issn.1671-7104.240364","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0
Abstract
Hemodynamic monitoring can reflect cardiac function and blood perfusion and is an indispensable monitoring method in clinical practice. Invasive hemodynamic monitoring methods represented by the thermodilution method are limited in their clinical application scope because they require vascular cannulation. Non-invasive hemodynamic monitoring has attracted extensive attention from medical companies and clinicians at home and abroad in recent years due to its advantages such as safety, non-invasiveness, continuous monitoring, simple operation, and low cost. This paper designs a non-invasive hemodynamic monitoring system based on the impedance cardiography, including hardware, algorithm, software design, and performance parameter evaluation. Among them, the hardware part mainly includes a differential high-frequency constant current source stimulation circuit, impedance cardiogram signal acquisition, and ECG signal acquisition circuit. Signal processing includes wave filtering, impedance cardiogram signal calibration, and ECG signal and impedance cardiogram signal feature point recognition. According to the collected impedance cardiogram and ECG signals, hemodynamic parameters such as heart rate (HR), stroke volume (SV), cardiac output (CO), stroke index (SI), cardiac index (CI), and cardiac contractility index (ICON) are calculated based on the Nyboer thoracic cylinder model. After testing, the key technical indicators of the system hardware are better than that of the relevant medical device standards. The system was used to collect impedance cardiogram and ECG signal data from 40 volunteers. The calculated HR, SV, and CO, three important hemodynamic indicators, were compared with the ICONCore non-invasive cardiac output monitor of OSYPKA Medical in Germany. Their Pearson correlation coefficients were 0.992 ( P<0.001), 0.948 ( P<0.001), and 0.933 ( P<0.001), respectively, verifying that the designed system has high accuracy and reliability.
期刊介绍:
Chinese Journal of Medical Instrumentation mainly reports on the development, progress, research and development, production, clinical application, management, and maintenance of medical devices and biomedical engineering. Its aim is to promote the exchange of information on medical devices and biomedical engineering in China and turn the journal into a high-quality academic journal that leads academic directions and advocates academic debates.