Anand Srinivasan, Rajikha Raja, John O Glass, Melissa M Hudson, Noah D Sabin, Kevin R Krull, Wilburn E Reddick
{"title":"Graph Neural Network Learning on the Pediatric Structural Connectome.","authors":"Anand Srinivasan, Rajikha Raja, John O Glass, Melissa M Hudson, Noah D Sabin, Kevin R Krull, Wilburn E Reddick","doi":"10.3390/tomography11020014","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Sex classification is a major benchmark of previous work in learning on the structural connectome, a naturally occurring brain graph that has proven useful for studying cognitive function and impairment. While graph neural networks (GNNs), specifically graph convolutional networks (GCNs), have gained popularity lately for their effectiveness in learning on graph data, achieving strong performance in adult sex classification tasks, their application to pediatric populations remains unexplored. We seek to characterize the capacity for GNN models to learn connectomic patterns on pediatric data through an exploration of training techniques and architectural design choices.</p><p><strong>Methods: </strong>Two datasets comprising an adult BRIGHT dataset (N = 147 Hodgkin's lymphoma survivors and N = 162 age similar controls) and a pediatric Human Connectome Project in Development (HCP-D) dataset (N = 135 healthy subjects) were utilized. Two GNN models (GCN simple and GCN residual), a deep neural network (multi-layer perceptron), and two standard machine learning models (random forest and support vector machine) were trained. Architecture exploration experiments were conducted to evaluate the impact of network depth, pooling techniques, and skip connections on the ability of GNN models to capture connectomic patterns. Models were assessed across a range of metrics including accuracy, AUC score, and adversarial robustness.</p><p><strong>Results: </strong>GNNs outperformed other models across both populations. Notably, adult GNN models achieved 85.1% accuracy in sex classification on unseen adult participants, consistent with prior studies. The extension of the adult models to the pediatric dataset and training on the smaller pediatric dataset were sub-optimal in their performance. Using adult data to augment pediatric models, the best GNN achieved comparable accuracy across unseen pediatric (83.0%) and adult (81.3%) participants. Adversarial sensitivity experiments showed that the simple GCN remained the most robust to perturbations, followed by the multi-layer perceptron and the residual GCN.</p><p><strong>Conclusions: </strong>These findings underscore the potential of GNNs in advancing our understanding of sex-specific neurological development and disorders and highlight the importance of data augmentation in overcoming challenges associated with small pediatric datasets. Further, they highlight relevant tradeoffs in the design landscape of connectomic GNNs. For example, while the simpler GNN model tested exhibits marginally worse accuracy and AUC scores in comparison to the more complex residual GNN, it demonstrates a higher degree of adversarial robustness.</p>","PeriodicalId":51330,"journal":{"name":"Tomography","volume":"11 2","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11861995/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tomography","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/tomography11020014","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: Sex classification is a major benchmark of previous work in learning on the structural connectome, a naturally occurring brain graph that has proven useful for studying cognitive function and impairment. While graph neural networks (GNNs), specifically graph convolutional networks (GCNs), have gained popularity lately for their effectiveness in learning on graph data, achieving strong performance in adult sex classification tasks, their application to pediatric populations remains unexplored. We seek to characterize the capacity for GNN models to learn connectomic patterns on pediatric data through an exploration of training techniques and architectural design choices.
Methods: Two datasets comprising an adult BRIGHT dataset (N = 147 Hodgkin's lymphoma survivors and N = 162 age similar controls) and a pediatric Human Connectome Project in Development (HCP-D) dataset (N = 135 healthy subjects) were utilized. Two GNN models (GCN simple and GCN residual), a deep neural network (multi-layer perceptron), and two standard machine learning models (random forest and support vector machine) were trained. Architecture exploration experiments were conducted to evaluate the impact of network depth, pooling techniques, and skip connections on the ability of GNN models to capture connectomic patterns. Models were assessed across a range of metrics including accuracy, AUC score, and adversarial robustness.
Results: GNNs outperformed other models across both populations. Notably, adult GNN models achieved 85.1% accuracy in sex classification on unseen adult participants, consistent with prior studies. The extension of the adult models to the pediatric dataset and training on the smaller pediatric dataset were sub-optimal in their performance. Using adult data to augment pediatric models, the best GNN achieved comparable accuracy across unseen pediatric (83.0%) and adult (81.3%) participants. Adversarial sensitivity experiments showed that the simple GCN remained the most robust to perturbations, followed by the multi-layer perceptron and the residual GCN.
Conclusions: These findings underscore the potential of GNNs in advancing our understanding of sex-specific neurological development and disorders and highlight the importance of data augmentation in overcoming challenges associated with small pediatric datasets. Further, they highlight relevant tradeoffs in the design landscape of connectomic GNNs. For example, while the simpler GNN model tested exhibits marginally worse accuracy and AUC scores in comparison to the more complex residual GNN, it demonstrates a higher degree of adversarial robustness.
TomographyMedicine-Radiology, Nuclear Medicine and Imaging
CiteScore
2.70
自引率
10.50%
发文量
222
期刊介绍:
TomographyTM publishes basic (technical and pre-clinical) and clinical scientific articles which involve the advancement of imaging technologies. Tomography encompasses studies that use single or multiple imaging modalities including for example CT, US, PET, SPECT, MR and hyperpolarization technologies, as well as optical modalities (i.e. bioluminescence, photoacoustic, endomicroscopy, fiber optic imaging and optical computed tomography) in basic sciences, engineering, preclinical and clinical medicine.
Tomography also welcomes studies involving exploration and refinement of contrast mechanisms and image-derived metrics within and across modalities toward the development of novel imaging probes for image-based feedback and intervention. The use of imaging in biology and medicine provides unparalleled opportunities to noninvasively interrogate tissues to obtain real-time dynamic and quantitative information required for diagnosis and response to interventions and to follow evolving pathological conditions. As multi-modal studies and the complexities of imaging technologies themselves are ever increasing to provide advanced information to scientists and clinicians.
Tomography provides a unique publication venue allowing investigators the opportunity to more precisely communicate integrated findings related to the diverse and heterogeneous features associated with underlying anatomical, physiological, functional, metabolic and molecular genetic activities of normal and diseased tissue. Thus Tomography publishes peer-reviewed articles which involve the broad use of imaging of any tissue and disease type including both preclinical and clinical investigations. In addition, hardware/software along with chemical and molecular probe advances are welcome as they are deemed to significantly contribute towards the long-term goal of improving the overall impact of imaging on scientific and clinical discovery.