Fabián Villena, Pablo Báez, Sergio Peñafiel, Matías Rojas, Inti Paredes, Jocelyn Dunstan
{"title":"Developing and Validating an Automatic Support System for Tumor Coding in Pathology Reports in Spanish.","authors":"Fabián Villena, Pablo Báez, Sergio Peñafiel, Matías Rojas, Inti Paredes, Jocelyn Dunstan","doi":"10.1200/CCI.24.00124","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Pathology reports provide valuable information for cancer registries to understand, plan, and implement strategies to mitigate the impact of cancer. However, coding essential information from unstructured reports is performed by experts in a time-consuming manual process. We developed and validated a novel two-step automatic coding system that first recognizes tumor morphology and topography mentions from free text and then suggests codes from the International Classification of Diseases for Oncology (ICD-O) in Spanish.</p><p><strong>Materials and methods: </strong>We created an annotated corpus of tumor morphology and topography mentions consisting of 1,101 documents. We combined it with the CANTEMIST corpus (Cancer Text Mining Shared Task). Specifically, we implemented a named entity recognition (NER) model using the bidirectional long short-term memory network-conditional random field architecture enhanced with a stacked embedding layer. We applied transfer learning from state-of-the-art pretrained language models to obtain high-quality contextual representations, thus improving the detection of entities. The mentions found using this model were subsequently coded using a search engine tailored to the ICD-O codes.</p><p><strong>Results: </strong>Our NER models achieved an F1 score of 0.86 and 0.90 for tumor morphology and topography, respectively. The overall performance of our automatic coding system achieved an accuracy at five suggestions of 0.72 and 0.65 for tumor morphology and topography, respectively.</p><p><strong>Conclusion: </strong>These results demonstrate the feasibility of implementing natural language processing tools in the routine of a cancer center to extract and code valuable information from pathology reports. Our recommender system allows reliable and transparent coding at the moment of consultation. This publication shares the annotated corpus in Spanish, annotation guidelines, and source code to reproduce our experiments.</p>","PeriodicalId":51626,"journal":{"name":"JCO Clinical Cancer Informatics","volume":"9 ","pages":"e2400124"},"PeriodicalIF":3.3000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11872266/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JCO Clinical Cancer Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1200/CCI.24.00124","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/24 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: Pathology reports provide valuable information for cancer registries to understand, plan, and implement strategies to mitigate the impact of cancer. However, coding essential information from unstructured reports is performed by experts in a time-consuming manual process. We developed and validated a novel two-step automatic coding system that first recognizes tumor morphology and topography mentions from free text and then suggests codes from the International Classification of Diseases for Oncology (ICD-O) in Spanish.
Materials and methods: We created an annotated corpus of tumor morphology and topography mentions consisting of 1,101 documents. We combined it with the CANTEMIST corpus (Cancer Text Mining Shared Task). Specifically, we implemented a named entity recognition (NER) model using the bidirectional long short-term memory network-conditional random field architecture enhanced with a stacked embedding layer. We applied transfer learning from state-of-the-art pretrained language models to obtain high-quality contextual representations, thus improving the detection of entities. The mentions found using this model were subsequently coded using a search engine tailored to the ICD-O codes.
Results: Our NER models achieved an F1 score of 0.86 and 0.90 for tumor morphology and topography, respectively. The overall performance of our automatic coding system achieved an accuracy at five suggestions of 0.72 and 0.65 for tumor morphology and topography, respectively.
Conclusion: These results demonstrate the feasibility of implementing natural language processing tools in the routine of a cancer center to extract and code valuable information from pathology reports. Our recommender system allows reliable and transparent coding at the moment of consultation. This publication shares the annotated corpus in Spanish, annotation guidelines, and source code to reproduce our experiments.