Developing and Validating an Automatic Support System for Tumor Coding in Pathology Reports in Spanish.

IF 3.3 Q2 ONCOLOGY
JCO Clinical Cancer Informatics Pub Date : 2025-02-01 Epub Date: 2025-02-24 DOI:10.1200/CCI.24.00124
Fabián Villena, Pablo Báez, Sergio Peñafiel, Matías Rojas, Inti Paredes, Jocelyn Dunstan
{"title":"Developing and Validating an Automatic Support System for Tumor Coding in Pathology Reports in Spanish.","authors":"Fabián Villena, Pablo Báez, Sergio Peñafiel, Matías Rojas, Inti Paredes, Jocelyn Dunstan","doi":"10.1200/CCI.24.00124","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Pathology reports provide valuable information for cancer registries to understand, plan, and implement strategies to mitigate the impact of cancer. However, coding essential information from unstructured reports is performed by experts in a time-consuming manual process. We developed and validated a novel two-step automatic coding system that first recognizes tumor morphology and topography mentions from free text and then suggests codes from the International Classification of Diseases for Oncology (ICD-O) in Spanish.</p><p><strong>Materials and methods: </strong>We created an annotated corpus of tumor morphology and topography mentions consisting of 1,101 documents. We combined it with the CANTEMIST corpus (Cancer Text Mining Shared Task). Specifically, we implemented a named entity recognition (NER) model using the bidirectional long short-term memory network-conditional random field architecture enhanced with a stacked embedding layer. We applied transfer learning from state-of-the-art pretrained language models to obtain high-quality contextual representations, thus improving the detection of entities. The mentions found using this model were subsequently coded using a search engine tailored to the ICD-O codes.</p><p><strong>Results: </strong>Our NER models achieved an F1 score of 0.86 and 0.90 for tumor morphology and topography, respectively. The overall performance of our automatic coding system achieved an accuracy at five suggestions of 0.72 and 0.65 for tumor morphology and topography, respectively.</p><p><strong>Conclusion: </strong>These results demonstrate the feasibility of implementing natural language processing tools in the routine of a cancer center to extract and code valuable information from pathology reports. Our recommender system allows reliable and transparent coding at the moment of consultation. This publication shares the annotated corpus in Spanish, annotation guidelines, and source code to reproduce our experiments.</p>","PeriodicalId":51626,"journal":{"name":"JCO Clinical Cancer Informatics","volume":"9 ","pages":"e2400124"},"PeriodicalIF":3.3000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11872266/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JCO Clinical Cancer Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1200/CCI.24.00124","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/24 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose: Pathology reports provide valuable information for cancer registries to understand, plan, and implement strategies to mitigate the impact of cancer. However, coding essential information from unstructured reports is performed by experts in a time-consuming manual process. We developed and validated a novel two-step automatic coding system that first recognizes tumor morphology and topography mentions from free text and then suggests codes from the International Classification of Diseases for Oncology (ICD-O) in Spanish.

Materials and methods: We created an annotated corpus of tumor morphology and topography mentions consisting of 1,101 documents. We combined it with the CANTEMIST corpus (Cancer Text Mining Shared Task). Specifically, we implemented a named entity recognition (NER) model using the bidirectional long short-term memory network-conditional random field architecture enhanced with a stacked embedding layer. We applied transfer learning from state-of-the-art pretrained language models to obtain high-quality contextual representations, thus improving the detection of entities. The mentions found using this model were subsequently coded using a search engine tailored to the ICD-O codes.

Results: Our NER models achieved an F1 score of 0.86 and 0.90 for tumor morphology and topography, respectively. The overall performance of our automatic coding system achieved an accuracy at five suggestions of 0.72 and 0.65 for tumor morphology and topography, respectively.

Conclusion: These results demonstrate the feasibility of implementing natural language processing tools in the routine of a cancer center to extract and code valuable information from pathology reports. Our recommender system allows reliable and transparent coding at the moment of consultation. This publication shares the annotated corpus in Spanish, annotation guidelines, and source code to reproduce our experiments.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.20
自引率
4.80%
发文量
190
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信