SfMDiffusion: self-supervised monocular depth estimation in endoscopy based on diffusion models.

IF 2.3 3区 医学 Q3 ENGINEERING, BIOMEDICAL
Yu Li, Da Chang, Die Luo, Jin Huang, Lan Dong, Du Wang, Liye Mei, Cheng Lei
{"title":"SfMDiffusion: self-supervised monocular depth estimation in endoscopy based on diffusion models.","authors":"Yu Li, Da Chang, Die Luo, Jin Huang, Lan Dong, Du Wang, Liye Mei, Cheng Lei","doi":"10.1007/s11548-025-03333-0","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>In laparoscopic surgery, accurate 3D reconstruction from endoscopic video is crucial for effective image-guided techniques. Current methods for monocular depth estimation (MDE) face challenges in complex surgical scenes, including limited training data, specular reflections, and varying illumination conditions.</p><p><strong>Methods: </strong>We propose SfMDiffusion, a novel diffusion-based self-supervised framework for MDE. Our approach combines: (1) a denoising diffusion process guided by pseudo-ground-truth depth maps, (2) knowledge distillation from a pre-trained teacher model, and (3) discriminative priors to enhance estimation robustness. Our design enables accurate depth estimation without requiring ground-truth depth data during training.</p><p><strong>Results: </strong>Experiments on the SCARED and Hamlyn datasets demonstrate that SfMDiffusion achieves superior performance: an Absolute relative error (Abs Rel) of 0.049, a Squared relative error (Sq Rel) of 0.366, and a Root Mean Square Error (RMSE) of 4.305 on SCARED dataset, and Abs Rel of 0.067, Sq Rel of 0.800, and RMSE of 7.465 on Hamlyn dataset.</p><p><strong>Conclusion: </strong>SfMDiffusion provides an innovative approach for 3D reconstruction in image-guided surgical techniques. Future work will focus on computational optimization and validation across diverse surgical scenarios. Our code is available at https://github.com/Skylanding/SfM-Diffusion .</p>","PeriodicalId":51251,"journal":{"name":"International Journal of Computer Assisted Radiology and Surgery","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computer Assisted Radiology and Surgery","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11548-025-03333-0","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose: In laparoscopic surgery, accurate 3D reconstruction from endoscopic video is crucial for effective image-guided techniques. Current methods for monocular depth estimation (MDE) face challenges in complex surgical scenes, including limited training data, specular reflections, and varying illumination conditions.

Methods: We propose SfMDiffusion, a novel diffusion-based self-supervised framework for MDE. Our approach combines: (1) a denoising diffusion process guided by pseudo-ground-truth depth maps, (2) knowledge distillation from a pre-trained teacher model, and (3) discriminative priors to enhance estimation robustness. Our design enables accurate depth estimation without requiring ground-truth depth data during training.

Results: Experiments on the SCARED and Hamlyn datasets demonstrate that SfMDiffusion achieves superior performance: an Absolute relative error (Abs Rel) of 0.049, a Squared relative error (Sq Rel) of 0.366, and a Root Mean Square Error (RMSE) of 4.305 on SCARED dataset, and Abs Rel of 0.067, Sq Rel of 0.800, and RMSE of 7.465 on Hamlyn dataset.

Conclusion: SfMDiffusion provides an innovative approach for 3D reconstruction in image-guided surgical techniques. Future work will focus on computational optimization and validation across diverse surgical scenarios. Our code is available at https://github.com/Skylanding/SfM-Diffusion .

求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Computer Assisted Radiology and Surgery
International Journal of Computer Assisted Radiology and Surgery ENGINEERING, BIOMEDICAL-RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
CiteScore
5.90
自引率
6.70%
发文量
243
审稿时长
6-12 weeks
期刊介绍: The International Journal for Computer Assisted Radiology and Surgery (IJCARS) is a peer-reviewed journal that provides a platform for closing the gap between medical and technical disciplines, and encourages interdisciplinary research and development activities in an international environment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信