Suppression of meiotic crossovers in pericentromeric heterochromatin requires synaptonemal complex and meiotic recombination factors in Drosophila melanogaster.

IF 3.3 3区 生物学 Q2 GENETICS & HEREDITY
Genetics Pub Date : 2025-04-17 DOI:10.1093/genetics/iyaf029
Nila M Pazhayam, Sasha Sagar, Jeff Sekelsky
{"title":"Suppression of meiotic crossovers in pericentromeric heterochromatin requires synaptonemal complex and meiotic recombination factors in Drosophila melanogaster.","authors":"Nila M Pazhayam, Sasha Sagar, Jeff Sekelsky","doi":"10.1093/genetics/iyaf029","DOIUrl":null,"url":null,"abstract":"<p><p>The centromere effect (CE) is a meiotic phenomenon that ensures meiotic crossover suppression in pericentromeric regions. Despite being a critical safeguard against nondisjunction, the mechanisms behind the CE remain unknown. Previous studies found that different regions of the Drosophila pericentromere, encompassing proximal euchromatin, beta, and alpha heterochromatin, undergo varying levels of crossover suppression, raising the question of whether distinct mechanisms establish the CE in different regions. We asked whether different pericentromeric regions respond differently to mutations that impair features that may play a role in the CE. In flies with a mutation that affects the synaptonemal complex (SC), a structure that is hypothesized to have roles in recombination and crossover patterning, we observed a redistribution of pericentromeric crossovers from proximal euchromatin towards beta heterochromatin but not alpha heterochromatin, indicating a role for the SC in suppressing crossovers in beta heterochromatin. In flies mutant for mei-218 or rec, which encode components of a critical pro-crossover complex, there was a more extreme redistribution of pericentromeric crossovers towards both beta and alpha heterochromatin, suggesting an important role for these meiotic recombination factors in suppressing heterochromatic crossovers. We mapped crossovers in flies mutant for Su(var)3-9, which encodes histone H3-lysine-9 methyltransferase. Although we expected strong alleviation of crossover suppression in heterochromatin, no changes in pericentromeric crossover distribution were observed in this mutant, indicating that this vital heterochromatin factor is dispensable for preventing crossovers in heterochromatin. Thus, in Drosophila. melanogaster the meiotic machinery seems to play a more significant role in suppressing centromere-proximal crossovers than chromatin state.</p>","PeriodicalId":48925,"journal":{"name":"Genetics","volume":" ","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12005251/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/genetics/iyaf029","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

The centromere effect (CE) is a meiotic phenomenon that ensures meiotic crossover suppression in pericentromeric regions. Despite being a critical safeguard against nondisjunction, the mechanisms behind the CE remain unknown. Previous studies found that different regions of the Drosophila pericentromere, encompassing proximal euchromatin, beta, and alpha heterochromatin, undergo varying levels of crossover suppression, raising the question of whether distinct mechanisms establish the CE in different regions. We asked whether different pericentromeric regions respond differently to mutations that impair features that may play a role in the CE. In flies with a mutation that affects the synaptonemal complex (SC), a structure that is hypothesized to have roles in recombination and crossover patterning, we observed a redistribution of pericentromeric crossovers from proximal euchromatin towards beta heterochromatin but not alpha heterochromatin, indicating a role for the SC in suppressing crossovers in beta heterochromatin. In flies mutant for mei-218 or rec, which encode components of a critical pro-crossover complex, there was a more extreme redistribution of pericentromeric crossovers towards both beta and alpha heterochromatin, suggesting an important role for these meiotic recombination factors in suppressing heterochromatic crossovers. We mapped crossovers in flies mutant for Su(var)3-9, which encodes histone H3-lysine-9 methyltransferase. Although we expected strong alleviation of crossover suppression in heterochromatin, no changes in pericentromeric crossover distribution were observed in this mutant, indicating that this vital heterochromatin factor is dispensable for preventing crossovers in heterochromatin. Thus, in Drosophila. melanogaster the meiotic machinery seems to play a more significant role in suppressing centromere-proximal crossovers than chromatin state.

在黑腹果蝇中,抑制中心点周围异染色质的减数分裂交叉需要突触复合体和减数分裂重组因子。
着丝粒效应(CE)是一种减数分裂现象,确保减数分裂交叉抑制在中心点周围区域。尽管是防止不分离的关键保障,但CE背后的机制仍然未知。先前的研究发现,果蝇周围中心粒的不同区域,包括近端常染色质、β和α异染色质,经历不同程度的交叉抑制,这就提出了在不同区域是否有不同机制建立CE的问题。我们询问不同的中心点周围区域是否对可能在CE中起作用的损害特征的突变有不同的反应。在具有影响突触复合体(SC)突变的果蝇中,假设一种结构在重组和交叉模式中起作用,我们观察到从近端常染色质到β异染色质而不是α异染色质的周中心点交叉重新分布,表明SC在抑制β异染色质的交叉中起作用。在果蝇的mei-218或rec突变体中,编码一个关键的前交叉复合体的成分,有一个更极端的向β和α异染色质的周中心点交叉重新分配,这表明这些减数分裂重组因子在抑制异染色质交叉中起重要作用。我们绘制了果蝇突变体Su(var)3-9的杂交图谱,该突变体编码组蛋白h3 -赖氨酸-9甲基转移酶。尽管我们预计异染色质的交叉抑制会得到强烈缓解,但在该突变体中没有观察到中心周围交叉分布的变化,这表明这一重要的异染色质因子对于防止异染色质交叉是必不可少的。因此,在D. melanogaster中,减数分裂机制似乎在抑制着丝粒-近端交叉中发挥比染色质状态更重要的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Genetics
Genetics GENETICS & HEREDITY-
CiteScore
6.90
自引率
6.10%
发文量
177
审稿时长
1.5 months
期刊介绍: GENETICS is published by the Genetics Society of America, a scholarly society that seeks to deepen our understanding of the living world by advancing our understanding of genetics. Since 1916, GENETICS has published high-quality, original research presenting novel findings bearing on genetics and genomics. The journal publishes empirical studies of organisms ranging from microbes to humans, as well as theoretical work. While it has an illustrious history, GENETICS has changed along with the communities it serves: it is not your mentor''s journal. The editors make decisions quickly – in around 30 days – without sacrificing the excellence and scholarship for which the journal has long been known. GENETICS is a peer reviewed, peer-edited journal, with an international reach and increasing visibility and impact. All editorial decisions are made through collaboration of at least two editors who are practicing scientists. GENETICS is constantly innovating: expanded types of content include Reviews, Commentary (current issues of interest to geneticists), Perspectives (historical), Primers (to introduce primary literature into the classroom), Toolbox Reviews, plus YeastBook, FlyBook, and WormBook (coming spring 2016). For particularly time-sensitive results, we publish Communications. As part of our mission to serve our communities, we''ve published thematic collections, including Genomic Selection, Multiparental Populations, Mouse Collaborative Cross, and the Genetics of Sex.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信