{"title":"Vision-Based Collision Warning Systems with Deep Learning: A Systematic Review.","authors":"Charith Chitraranjan, Vipooshan Vipulananthan, Thuvarakan Sritharan","doi":"10.3390/jimaging11020064","DOIUrl":null,"url":null,"abstract":"<p><p>Timely prediction of collisions enables advanced driver assistance systems to issue warnings and initiate emergency maneuvers as needed to avoid collisions. With recent developments in computer vision and deep learning, collision warning systems that use vision as the only sensory input have emerged. They are less expensive than those that use multiple sensors, but their effectiveness must be thoroughly assessed. We systematically searched academic literature for studies proposing ego-centric, vision-based collision warning systems that use deep learning techniques. Thirty-one studies among the search results satisfied our inclusion criteria. Risk of bias was assessed with PROBAST. We reviewed the selected studies and answer three primary questions: What are the (1) deep learning techniques used and how are they used? (2) datasets and experiments used to evaluate? (3) results achieved? We identified two main categories of methods: Those that use deep learning models to directly predict the probability of a future collision from input video, and those that use deep learning models at one or more stages of a pipeline to compute a threat metric before predicting collisions. More importantly, we show that the experimental evaluation of most systems is inadequate due to either not performing quantitative experiments or various biases present in the datasets used. Lack of suitable datasets is a major challenge to the evaluation of these systems and we suggest future work to address this issue.</p>","PeriodicalId":37035,"journal":{"name":"Journal of Imaging","volume":"11 2","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11856197/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/jimaging11020064","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Timely prediction of collisions enables advanced driver assistance systems to issue warnings and initiate emergency maneuvers as needed to avoid collisions. With recent developments in computer vision and deep learning, collision warning systems that use vision as the only sensory input have emerged. They are less expensive than those that use multiple sensors, but their effectiveness must be thoroughly assessed. We systematically searched academic literature for studies proposing ego-centric, vision-based collision warning systems that use deep learning techniques. Thirty-one studies among the search results satisfied our inclusion criteria. Risk of bias was assessed with PROBAST. We reviewed the selected studies and answer three primary questions: What are the (1) deep learning techniques used and how are they used? (2) datasets and experiments used to evaluate? (3) results achieved? We identified two main categories of methods: Those that use deep learning models to directly predict the probability of a future collision from input video, and those that use deep learning models at one or more stages of a pipeline to compute a threat metric before predicting collisions. More importantly, we show that the experimental evaluation of most systems is inadequate due to either not performing quantitative experiments or various biases present in the datasets used. Lack of suitable datasets is a major challenge to the evaluation of these systems and we suggest future work to address this issue.