Optimizing the accession-level quantity of seeds to put into storage to minimize seed (gene)bank regeneration or re-collection.

IF 2.6 3区 环境科学与生态学 Q2 BIODIVERSITY CONSERVATION
Conservation Physiology Pub Date : 2025-02-23 eCollection Date: 2025-01-01 DOI:10.1093/conphys/coaf011
Fiona R Hay, Katherine J Baum Née Whitehouse, Olaniyi Oyatomi, Dustin Wolkis
{"title":"Optimizing the accession-level quantity of seeds to put into storage to minimize seed (gene)bank regeneration or re-collection.","authors":"Fiona R Hay, Katherine J Baum Née Whitehouse, Olaniyi Oyatomi, Dustin Wolkis","doi":"10.1093/conphys/coaf011","DOIUrl":null,"url":null,"abstract":"<p><p>Seed (gene)banking is an effective way to conserve cultivated and wild plant diversity. However, long-term funding is not always consistently sufficient, and there is a need to both strengthen the effectiveness of genebank operations and maximize cost efficiency. One way to control the cost of maintaining a germplasm collection is to optimize the quantity of seeds per accession that is placed into storage, depending on the expected length of time a seed lot will remain above the viability threshold, expected rates of use for distribution and viability testing and on the requirement to ensure a reserve. Here, we express this as an equation, which can be applied to cultivated species and adjusted to different scenarios, but also to inform decisions about use of accessions of wild species where the number of seeds available is limited, a common scenario for wild-species conservation seed banks. For many crop genebanks, given the expected longevity of seeds, it would be worthwhile to increase the number of seeds produced and processed for storage. This would also help to diminish the risk of genetic drift due to frequent cycles of regeneration but would have implications in terms of how accessions are regenerated, in particular, how many plants are used for regeneration and the size of storage facilities. The equation we present can also be rearranged and used to plan how to allocate seeds for testing and use when the number of seeds available is limited. This may have particular relevance for species conservation seed banks.</p>","PeriodicalId":54331,"journal":{"name":"Conservation Physiology","volume":"13 1","pages":"coaf011"},"PeriodicalIF":2.6000,"publicationDate":"2025-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11849998/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conservation Physiology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1093/conphys/coaf011","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"BIODIVERSITY CONSERVATION","Score":null,"Total":0}
引用次数: 0

Abstract

Seed (gene)banking is an effective way to conserve cultivated and wild plant diversity. However, long-term funding is not always consistently sufficient, and there is a need to both strengthen the effectiveness of genebank operations and maximize cost efficiency. One way to control the cost of maintaining a germplasm collection is to optimize the quantity of seeds per accession that is placed into storage, depending on the expected length of time a seed lot will remain above the viability threshold, expected rates of use for distribution and viability testing and on the requirement to ensure a reserve. Here, we express this as an equation, which can be applied to cultivated species and adjusted to different scenarios, but also to inform decisions about use of accessions of wild species where the number of seeds available is limited, a common scenario for wild-species conservation seed banks. For many crop genebanks, given the expected longevity of seeds, it would be worthwhile to increase the number of seeds produced and processed for storage. This would also help to diminish the risk of genetic drift due to frequent cycles of regeneration but would have implications in terms of how accessions are regenerated, in particular, how many plants are used for regeneration and the size of storage facilities. The equation we present can also be rearranged and used to plan how to allocate seeds for testing and use when the number of seeds available is limited. This may have particular relevance for species conservation seed banks.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Conservation Physiology
Conservation Physiology Environmental Science-Management, Monitoring, Policy and Law
CiteScore
5.10
自引率
3.70%
发文量
71
审稿时长
11 weeks
期刊介绍: Conservation Physiology is an online only, fully open access journal published on behalf of the Society for Experimental Biology. Biodiversity across the globe faces a growing number of threats associated with human activities. Conservation Physiology will publish research on all taxa (microbes, plants and animals) focused on understanding and predicting how organisms, populations, ecosystems and natural resources respond to environmental change and stressors. Physiology is considered in the broadest possible terms to include functional and mechanistic responses at all scales. We also welcome research towards developing and refining strategies to rebuild populations, restore ecosystems, inform conservation policy, and manage living resources. We define conservation physiology broadly and encourage potential authors to contact the editorial team if they have any questions regarding the remit of the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信