Validation of Novel Image Processing Method for Objective Quantification of Intra-Articular Bleeding During Arthroscopic Procedures.

IF 2.7 Q3 IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY
Olgar Birsel, Umut Zengin, Ilker Eren, Ali Ersen, Beren Semiz, Mehmet Demirhan
{"title":"Validation of Novel Image Processing Method for Objective Quantification of Intra-Articular Bleeding During Arthroscopic Procedures.","authors":"Olgar Birsel, Umut Zengin, Ilker Eren, Ali Ersen, Beren Semiz, Mehmet Demirhan","doi":"10.3390/jimaging11020040","DOIUrl":null,"url":null,"abstract":"<p><p>Visual clarity is crucial for shoulder arthroscopy, directly influencing surgical precision and outcomes. Despite advances in imaging technology, intraoperative bleeding remains a significant obstacle to optimal visibility, with subjective evaluation methods lacking consistency and standardization. This study proposes a novel image processing system to objectively quantify bleeding and assess surgical effectiveness. The system uses color recognition algorithms to calculate a bleeding score based on pixel ratios by incorporating multiple color spaces to enhance accuracy and minimize errors. Moreover, 200 three-second video clips from prior arthroscopic rotator cuff repairs were evaluated by three senior surgeons trained on the system's color metrics and scoring process. Assessments were repeated two weeks later to test intraobserver reliability. The system's scores were compared to the average score given by the surgeons. The average surgeon-assigned score was 5.10 (range: 1-9.66), while the system scored videos from 1 to 9.46, with an average of 5.08. The mean absolute error between system and surgeon scores was 0.56, with a standard deviation of 0.50, achieving agreement ranging from [0.96,0.98] with 96.7% confidence (ICC = 0.967). This system provides a standardized method to evaluate intraoperative bleeding, enabling the precise detection of blood variations and supporting advanced technologies like autonomous arthropumps to enhance arthroscopy and surgical outcomes.</p>","PeriodicalId":37035,"journal":{"name":"Journal of Imaging","volume":"11 2","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11856628/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/jimaging11020040","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Visual clarity is crucial for shoulder arthroscopy, directly influencing surgical precision and outcomes. Despite advances in imaging technology, intraoperative bleeding remains a significant obstacle to optimal visibility, with subjective evaluation methods lacking consistency and standardization. This study proposes a novel image processing system to objectively quantify bleeding and assess surgical effectiveness. The system uses color recognition algorithms to calculate a bleeding score based on pixel ratios by incorporating multiple color spaces to enhance accuracy and minimize errors. Moreover, 200 three-second video clips from prior arthroscopic rotator cuff repairs were evaluated by three senior surgeons trained on the system's color metrics and scoring process. Assessments were repeated two weeks later to test intraobserver reliability. The system's scores were compared to the average score given by the surgeons. The average surgeon-assigned score was 5.10 (range: 1-9.66), while the system scored videos from 1 to 9.46, with an average of 5.08. The mean absolute error between system and surgeon scores was 0.56, with a standard deviation of 0.50, achieving agreement ranging from [0.96,0.98] with 96.7% confidence (ICC = 0.967). This system provides a standardized method to evaluate intraoperative bleeding, enabling the precise detection of blood variations and supporting advanced technologies like autonomous arthropumps to enhance arthroscopy and surgical outcomes.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Imaging
Journal of Imaging Medicine-Radiology, Nuclear Medicine and Imaging
CiteScore
5.90
自引率
6.20%
发文量
303
审稿时长
7 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信