Semantic-Guided Transformer Network for Crop Classification in Hyperspectral Images.

IF 2.7 Q3 IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY
Weiqiang Pi, Tao Zhang, Rongyang Wang, Guowei Ma, Yong Wang, Jianmin Du
{"title":"Semantic-Guided Transformer Network for Crop Classification in Hyperspectral Images.","authors":"Weiqiang Pi, Tao Zhang, Rongyang Wang, Guowei Ma, Yong Wang, Jianmin Du","doi":"10.3390/jimaging11020037","DOIUrl":null,"url":null,"abstract":"<p><p>The hyperspectral remote sensing images of agricultural crops contain rich spectral information, which can provide important details about crop growth status, diseases, and pests. However, existing crop classification methods face several key limitations when processing hyperspectral remote sensing images, primarily in the following aspects. First, the complex background in the images. Various elements in the background may have similar spectral characteristics to the crops, and this spectral similarity makes the classification model susceptible to background interference, thus reducing classification accuracy. Second, the differences in crop scales increase the difficulty of feature extraction. In different image regions, the scale of crops can vary significantly, and traditional classification methods often struggle to effectively capture this information. Additionally, due to the limitations of spectral information, especially under multi-scale variation backgrounds, the extraction of crop information becomes even more challenging, leading to instability in the classification results. To address these issues, a semantic-guided transformer network (SGTN) is proposed, which aims to effectively overcome the limitations of these deep learning methods and improve crop classification accuracy and robustness. First, a multi-scale spatial-spectral information extraction (MSIE) module is designed that effectively handle the variations of crops at different scales in the image, thereby extracting richer and more accurate features, and reducing the impact of scale changes. Second, a semantic-guided attention (SGA) module is proposed, which enhances the model's sensitivity to crop semantic information, further reducing background interference and improving the accuracy of crop area recognition. By combining the MSIE and SGA modules, the SGTN can focus on the semantic features of crops at multiple scales, thus generating more accurate classification results. Finally, a two-stage feature extraction structure is employed to further optimize the extraction of crop semantic features and enhance classification accuracy. The results show that on the Indian Pines, Pavia University, and Salinas benchmark datasets, the overall accuracies of the proposed model are 98.24%, 98.34%, and 97.89%, respectively. Compared with other methods, the model achieves better classification accuracy and generalization performance. In the future, the SGTN is expected to be applied to more agricultural remote sensing tasks, such as crop disease detection and yield prediction, providing more reliable technical support for precision agriculture and agricultural monitoring.</p>","PeriodicalId":37035,"journal":{"name":"Journal of Imaging","volume":"11 2","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11856770/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/jimaging11020037","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The hyperspectral remote sensing images of agricultural crops contain rich spectral information, which can provide important details about crop growth status, diseases, and pests. However, existing crop classification methods face several key limitations when processing hyperspectral remote sensing images, primarily in the following aspects. First, the complex background in the images. Various elements in the background may have similar spectral characteristics to the crops, and this spectral similarity makes the classification model susceptible to background interference, thus reducing classification accuracy. Second, the differences in crop scales increase the difficulty of feature extraction. In different image regions, the scale of crops can vary significantly, and traditional classification methods often struggle to effectively capture this information. Additionally, due to the limitations of spectral information, especially under multi-scale variation backgrounds, the extraction of crop information becomes even more challenging, leading to instability in the classification results. To address these issues, a semantic-guided transformer network (SGTN) is proposed, which aims to effectively overcome the limitations of these deep learning methods and improve crop classification accuracy and robustness. First, a multi-scale spatial-spectral information extraction (MSIE) module is designed that effectively handle the variations of crops at different scales in the image, thereby extracting richer and more accurate features, and reducing the impact of scale changes. Second, a semantic-guided attention (SGA) module is proposed, which enhances the model's sensitivity to crop semantic information, further reducing background interference and improving the accuracy of crop area recognition. By combining the MSIE and SGA modules, the SGTN can focus on the semantic features of crops at multiple scales, thus generating more accurate classification results. Finally, a two-stage feature extraction structure is employed to further optimize the extraction of crop semantic features and enhance classification accuracy. The results show that on the Indian Pines, Pavia University, and Salinas benchmark datasets, the overall accuracies of the proposed model are 98.24%, 98.34%, and 97.89%, respectively. Compared with other methods, the model achieves better classification accuracy and generalization performance. In the future, the SGTN is expected to be applied to more agricultural remote sensing tasks, such as crop disease detection and yield prediction, providing more reliable technical support for precision agriculture and agricultural monitoring.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Imaging
Journal of Imaging Medicine-Radiology, Nuclear Medicine and Imaging
CiteScore
5.90
自引率
6.20%
发文量
303
审稿时长
7 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信