Robot-Based Procedure for 3D Reconstruction of Abdominal Organs Using the Iterative Closest Point and Pose Graph Algorithms.

IF 2.7 Q3 IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY
Birthe Göbel, Jonas Huurdeman, Alexander Reiterer, Knut Möller
{"title":"Robot-Based Procedure for 3D Reconstruction of Abdominal Organs Using the Iterative Closest Point and Pose Graph Algorithms.","authors":"Birthe Göbel, Jonas Huurdeman, Alexander Reiterer, Knut Möller","doi":"10.3390/jimaging11020044","DOIUrl":null,"url":null,"abstract":"<p><p>Image-based 3D reconstruction enables robot-assisted interventions and image-guided navigation, which are emerging technologies in laparoscopy. When a robotic arm guides a laparoscope for image acquisition, hand-eye calibration is required to know the transformation between the camera and the robot flange. The calibration procedure is complex and must be conducted after each intervention (when the laparoscope is dismounted for cleaning). In the field, the surgeons and their assistants cannot be expected to do so. Thus, our approach is a procedure for a robot-based multi-view 3D reconstruction without hand-eye calibration, but with pose optimization algorithms instead. In this work, a robotic arm and a stereo laparoscope build the experimental setup. The procedure includes the stereo matching algorithm Semi Global Matching from OpenCV for depth measurement and the multiscale color iterative closest point algorithm from Open3D (v0.19), along with the multiway registration algorithm using a pose graph from Open3D (v0.19) for pose optimization. The procedure is evaluated quantitatively and qualitatively on ex vivo organs. The results are a low root mean squared error (1.1-3.37 mm) and dense point clouds. The proposed procedure leads to a plausible 3D model, and there is no need for complex hand-eye calibration, as this step can be compensated for by pose optimization algorithms.</p>","PeriodicalId":37035,"journal":{"name":"Journal of Imaging","volume":"11 2","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11856341/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/jimaging11020044","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Image-based 3D reconstruction enables robot-assisted interventions and image-guided navigation, which are emerging technologies in laparoscopy. When a robotic arm guides a laparoscope for image acquisition, hand-eye calibration is required to know the transformation between the camera and the robot flange. The calibration procedure is complex and must be conducted after each intervention (when the laparoscope is dismounted for cleaning). In the field, the surgeons and their assistants cannot be expected to do so. Thus, our approach is a procedure for a robot-based multi-view 3D reconstruction without hand-eye calibration, but with pose optimization algorithms instead. In this work, a robotic arm and a stereo laparoscope build the experimental setup. The procedure includes the stereo matching algorithm Semi Global Matching from OpenCV for depth measurement and the multiscale color iterative closest point algorithm from Open3D (v0.19), along with the multiway registration algorithm using a pose graph from Open3D (v0.19) for pose optimization. The procedure is evaluated quantitatively and qualitatively on ex vivo organs. The results are a low root mean squared error (1.1-3.37 mm) and dense point clouds. The proposed procedure leads to a plausible 3D model, and there is no need for complex hand-eye calibration, as this step can be compensated for by pose optimization algorithms.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Imaging
Journal of Imaging Medicine-Radiology, Nuclear Medicine and Imaging
CiteScore
5.90
自引率
6.20%
发文量
303
审稿时长
7 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信