Revealing Gender Bias from Prompt to Image in Stable Diffusion.

IF 2.7 Q3 IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY
Yankun Wu, Yuta Nakashima, Noa Garcia
{"title":"Revealing Gender Bias from Prompt to Image in Stable Diffusion.","authors":"Yankun Wu, Yuta Nakashima, Noa Garcia","doi":"10.3390/jimaging11020035","DOIUrl":null,"url":null,"abstract":"<p><p>Social biases in generative models have gained increasing attention. This paper proposes an automatic evaluation protocol for text-to-image generation, examining how gender bias originates and perpetuates in the generation process of Stable Diffusion. Using triplet prompts that vary by gender indicators, we trace presentations at several stages of the generation process and explore dependencies between prompts and images. Our findings reveal the bias persists throughout all internal stages of the generating process and manifests in the entire images. For instance, differences in object presence, such as different instruments and outfit preferences, are observed across genders and extend to overall image layouts. Moreover, our experiments demonstrate that neutral prompts tend to produce images more closely aligned with those from masculine prompts than with their female counterparts. We also investigate prompt-image dependencies to further understand how bias is embedded in the generated content. Finally, we offer recommendations for developers and users to mitigate this effect in text-to-image generation.</p>","PeriodicalId":37035,"journal":{"name":"Journal of Imaging","volume":"11 2","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11856082/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/jimaging11020035","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Social biases in generative models have gained increasing attention. This paper proposes an automatic evaluation protocol for text-to-image generation, examining how gender bias originates and perpetuates in the generation process of Stable Diffusion. Using triplet prompts that vary by gender indicators, we trace presentations at several stages of the generation process and explore dependencies between prompts and images. Our findings reveal the bias persists throughout all internal stages of the generating process and manifests in the entire images. For instance, differences in object presence, such as different instruments and outfit preferences, are observed across genders and extend to overall image layouts. Moreover, our experiments demonstrate that neutral prompts tend to produce images more closely aligned with those from masculine prompts than with their female counterparts. We also investigate prompt-image dependencies to further understand how bias is embedded in the generated content. Finally, we offer recommendations for developers and users to mitigate this effect in text-to-image generation.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Imaging
Journal of Imaging Medicine-Radiology, Nuclear Medicine and Imaging
CiteScore
5.90
自引率
6.20%
发文量
303
审稿时长
7 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信