Multiphoton Microscopy to Visualize Live Renal Nerves in Reanimated Kidney Blocks.

IF 2.7 Q3 IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY
Joerg Reifart, Patrick T Willey, Paul A Iaizzo
{"title":"Multiphoton Microscopy to Visualize Live Renal Nerves in Reanimated Kidney Blocks.","authors":"Joerg Reifart, Patrick T Willey, Paul A Iaizzo","doi":"10.3390/jimaging11020056","DOIUrl":null,"url":null,"abstract":"<p><p>Renal denervation to treat arterial hypertension is growing in adoption but still shows inconsistent results. Device improvement is difficult, as there is currently no way to study the immediate success of renal denervation devices in living tissue. In an effort to visualize live renal nerves surrounding their arteries using multiphoton microscopy, kidney pairs were explanted from Yorkshire pigs. They were maintained viable with a pulsatile perfusion apparatus using Visible Kidney™ methodologies, in which blood is replaced by a modified, oxygenated, and warmed (37 °C) Krebs-Henseleit buffer. The block resection allows catheter placement for nerve ablation treatment. Subsequently, the kidney block was disconnected from the perfusion system and underwent multiphoton microscopy (Nikon A1R 1024 MP). A total of three renal blocks were imaged using this model. Using 780 nm excitation for autofluorescence, we were able to selectively image peri-arterial nerves (2.5-23 μm diameter) alongside arteriolar elastin fibers (1.96 ± 0.87 μm; range: 0.3-4.27) at 25× magnification at a pixel size of 1.02 µm). Autofluoresecence was not strong enough to identify nerves at 4× magnification. There was a high but variable signal-to-noise ratio of 52.3 (median, IQR 159). This model may be useful for improving future physician training and innovations in renal denervation technologies.</p>","PeriodicalId":37035,"journal":{"name":"Journal of Imaging","volume":"11 2","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11856253/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/jimaging11020056","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Renal denervation to treat arterial hypertension is growing in adoption but still shows inconsistent results. Device improvement is difficult, as there is currently no way to study the immediate success of renal denervation devices in living tissue. In an effort to visualize live renal nerves surrounding their arteries using multiphoton microscopy, kidney pairs were explanted from Yorkshire pigs. They were maintained viable with a pulsatile perfusion apparatus using Visible Kidney™ methodologies, in which blood is replaced by a modified, oxygenated, and warmed (37 °C) Krebs-Henseleit buffer. The block resection allows catheter placement for nerve ablation treatment. Subsequently, the kidney block was disconnected from the perfusion system and underwent multiphoton microscopy (Nikon A1R 1024 MP). A total of three renal blocks were imaged using this model. Using 780 nm excitation for autofluorescence, we were able to selectively image peri-arterial nerves (2.5-23 μm diameter) alongside arteriolar elastin fibers (1.96 ± 0.87 μm; range: 0.3-4.27) at 25× magnification at a pixel size of 1.02 µm). Autofluoresecence was not strong enough to identify nerves at 4× magnification. There was a high but variable signal-to-noise ratio of 52.3 (median, IQR 159). This model may be useful for improving future physician training and innovations in renal denervation technologies.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Imaging
Journal of Imaging Medicine-Radiology, Nuclear Medicine and Imaging
CiteScore
5.90
自引率
6.20%
发文量
303
审稿时长
7 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信