Machine Learning-Based Approaches for Breast Density Estimation from Mammograms: A Comprehensive Review.

IF 2.7 Q3 IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY
Khaldoon Alhusari, Salam Dhou
{"title":"Machine Learning-Based Approaches for Breast Density Estimation from Mammograms: A Comprehensive Review.","authors":"Khaldoon Alhusari, Salam Dhou","doi":"10.3390/jimaging11020038","DOIUrl":null,"url":null,"abstract":"<p><p>Breast cancer, as of 2022, is the most prevalent type of cancer in women. Breast density-a measure of the non-fatty tissue in the breast-is a strong risk factor for breast cancer that can be estimated from mammograms. The importance of studying breast density is twofold. First, high breast density can be a factor in lowering mammogram sensitivity, as dense tissue can mask tumors. Second, higher breast density is associated with an increased risk of breast cancer, making accurate assessments vital. This paper presents a comprehensive review of the mammographic density estimation literature, with an emphasis on machine-learning-based approaches. The approaches reviewed can be classified as visual, software-, machine learning-, and segmentation-based. Machine learning methods can be further broken down into two categories: traditional machine learning and deep learning approaches. The most commonly utilized models are support vector machines (SVMs) and convolutional neural networks (CNNs), with classification accuracies ranging from 76.70% to 98.75%. Major limitations of the current works include subjectivity and cost-inefficiency. Future work can focus on addressing these limitations, potentially through the use of unsupervised segmentation and state-of-the-art deep learning models such as transformers. By addressing the current limitations, future research can pave the way for more reliable breast density estimation methods, ultimately improving early detection and diagnosis.</p>","PeriodicalId":37035,"journal":{"name":"Journal of Imaging","volume":"11 2","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11856162/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/jimaging11020038","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Breast cancer, as of 2022, is the most prevalent type of cancer in women. Breast density-a measure of the non-fatty tissue in the breast-is a strong risk factor for breast cancer that can be estimated from mammograms. The importance of studying breast density is twofold. First, high breast density can be a factor in lowering mammogram sensitivity, as dense tissue can mask tumors. Second, higher breast density is associated with an increased risk of breast cancer, making accurate assessments vital. This paper presents a comprehensive review of the mammographic density estimation literature, with an emphasis on machine-learning-based approaches. The approaches reviewed can be classified as visual, software-, machine learning-, and segmentation-based. Machine learning methods can be further broken down into two categories: traditional machine learning and deep learning approaches. The most commonly utilized models are support vector machines (SVMs) and convolutional neural networks (CNNs), with classification accuracies ranging from 76.70% to 98.75%. Major limitations of the current works include subjectivity and cost-inefficiency. Future work can focus on addressing these limitations, potentially through the use of unsupervised segmentation and state-of-the-art deep learning models such as transformers. By addressing the current limitations, future research can pave the way for more reliable breast density estimation methods, ultimately improving early detection and diagnosis.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Imaging
Journal of Imaging Medicine-Radiology, Nuclear Medicine and Imaging
CiteScore
5.90
自引率
6.20%
发文量
303
审稿时长
7 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信