{"title":"Machine Learning-Based Approaches for Breast Density Estimation from Mammograms: A Comprehensive Review.","authors":"Khaldoon Alhusari, Salam Dhou","doi":"10.3390/jimaging11020038","DOIUrl":null,"url":null,"abstract":"<p><p>Breast cancer, as of 2022, is the most prevalent type of cancer in women. Breast density-a measure of the non-fatty tissue in the breast-is a strong risk factor for breast cancer that can be estimated from mammograms. The importance of studying breast density is twofold. First, high breast density can be a factor in lowering mammogram sensitivity, as dense tissue can mask tumors. Second, higher breast density is associated with an increased risk of breast cancer, making accurate assessments vital. This paper presents a comprehensive review of the mammographic density estimation literature, with an emphasis on machine-learning-based approaches. The approaches reviewed can be classified as visual, software-, machine learning-, and segmentation-based. Machine learning methods can be further broken down into two categories: traditional machine learning and deep learning approaches. The most commonly utilized models are support vector machines (SVMs) and convolutional neural networks (CNNs), with classification accuracies ranging from 76.70% to 98.75%. Major limitations of the current works include subjectivity and cost-inefficiency. Future work can focus on addressing these limitations, potentially through the use of unsupervised segmentation and state-of-the-art deep learning models such as transformers. By addressing the current limitations, future research can pave the way for more reliable breast density estimation methods, ultimately improving early detection and diagnosis.</p>","PeriodicalId":37035,"journal":{"name":"Journal of Imaging","volume":"11 2","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11856162/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/jimaging11020038","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Breast cancer, as of 2022, is the most prevalent type of cancer in women. Breast density-a measure of the non-fatty tissue in the breast-is a strong risk factor for breast cancer that can be estimated from mammograms. The importance of studying breast density is twofold. First, high breast density can be a factor in lowering mammogram sensitivity, as dense tissue can mask tumors. Second, higher breast density is associated with an increased risk of breast cancer, making accurate assessments vital. This paper presents a comprehensive review of the mammographic density estimation literature, with an emphasis on machine-learning-based approaches. The approaches reviewed can be classified as visual, software-, machine learning-, and segmentation-based. Machine learning methods can be further broken down into two categories: traditional machine learning and deep learning approaches. The most commonly utilized models are support vector machines (SVMs) and convolutional neural networks (CNNs), with classification accuracies ranging from 76.70% to 98.75%. Major limitations of the current works include subjectivity and cost-inefficiency. Future work can focus on addressing these limitations, potentially through the use of unsupervised segmentation and state-of-the-art deep learning models such as transformers. By addressing the current limitations, future research can pave the way for more reliable breast density estimation methods, ultimately improving early detection and diagnosis.